4 research outputs found

    An easily integrable industrial system for gamma spectroscopic analysis and traceability of stones and building materials

    Get PDF
    In the building material and stones market, lots of restrictions are coming in different world zones. In Europe, a recent regulatory set up the maximum level of radiological emissions for materials intended for use in public and private building structures. For this reason, companies need to have a very efficient radiological measurements system in their production chain, in order to respect all the rules and to be competitive in the world market. This article describes CORSAIR, a Cloud-Oriented Measurement System for Radiological Investigation and Traceability of Stones. Our cyber-physical system consists of sensing nodes network connected to a data collection gateway through LoRaWAN protocol, and interfaces with a centralized cloud application. CORSAIR introduces a fast, repeatable, real-time and non-destructive method to measure radiological emissions and other parameters of each single building material item, uniquely identified by an applied RFID tag. The validity of this system is confirmed by in-situ measurement campaign compared with high-precision laboratory analysis. The results demonstrate the accuracy of the CORSAIR sensor and the possibility to easily integrate it in the company production chain without any change

    Special nuclear material identification through one-minute measurement with a new backpack radiation device in real scenario conditions

    No full text
    The constant concerns in global nuclear safety, aimed at deterring and combating the illicit trafficking of Material Out of Regulatory Control (MORC) and its possible use in criminal acts has raised the necessity of new detection solutions with higher efficiency and resolution to provide a high level of accuracy in the report to the authorities. Today's radioactive isotope identifiers perform gamma spectroscopy identification and, sometimes, neutron counting. This paper presents the results of measurements performed in real-scenario conditions with a new type of portable radioactive isotope identifier for the detection and identification of both gamma and neutron sources. Its singular features are: 1) the capability to identify sources through the detection of neutrons, discriminating spontaneous fission sources (Cf-252), \u3b1-n sources (Am/Be, Am/Li) and nuclear material containing mix of isotopes of plutonium or uranium 2) the capability to make cross correlation between gamma and neutron measurements to achieve a higher level of accuracy in the identification of SNM that emits both neutrons and characteristics gammas. The test results are compared with international standards. The device exceeds the standard performance by triggering a neutron alarm for a 20.000 n/s Cf-252 source at a five times greater distance than the ANSI N42.34 one

    Modular and Integrated Sensor Network of Intelligent Radiation Monitor Systems for Radiological and Nuclear Threat Response

    No full text
    Increased sensitivity to nuclear safety and security issues has prompted public entities and private institutions to maximize their capability to rapidly assess risks and intervene in the case of accident or threat. Quick intervention and response are achieved through nuclear measurements via airborne, land, and underwater systems. A network of cohesive, well-integrated and easy deployable radiation monitoring systems combined with real-time analysis of data is essential to facilitate and enhance the decision-making process during these most critical moments enhancing the quality of the management plan. The presented radiation monitoring systems can be integrated in several form factors which depend mainly on operational needs and internal battery for autonomous operation. Compact ARM based computers is embedded, which can store large amount of data in their non-volatile memory, run automatic data analysis and trigger alarms in case of exceeding radiation levels. All the systems can communicate with redundant interfaces in failover configuration and upload the acquired environmental information in a central database. The same monitoring systems can alert the emergency response personnel on the field as well, through wireless connection to common tablets or cellphone or SMS, guaranteeing a prompt response in case an illicit transportation of radiological or nuclear material is detected

    Modular and Integrated Sensor Network of Intelligent Radiation Monitor Systems for Radiological and Nuclear Threat Response

    Get PDF
    Increased sensitivity to nuclear safety and security issues has prompted public entities and private institutions to maximize their capability to rapidly assess risks and intervene in the case of accident or threat. Quick intervention and response are achieved through nuclear measurements via airborne, land, and underwater systems. A network of cohesive, well-integrated and easy deployable radiation monitoring systems combined with real-time analysis of data is essential to facilitate and enhance the decision-making process during these most critical moments enhancing the quality of the management plan. The presented radiation monitoring systems can be integrated in several form factors which depend mainly on operational needs and internal battery for autonomous operation. Compact ARM based computers is embedded, which can store large amount of data in their non-volatile memory, run automatic data analysis and trigger alarms in case of exceeding radiation levels. All the systems can communicate with redundant interfaces in failover configuration and upload the acquired environmental information in a central database. The same monitoring systems can alert the emergency response personnel on the field as well, through wireless connection to common tablets or cellphone or SMS, guaranteeing a prompt response in case an illicit transportation of radiological or nuclear material is detected
    corecore