2,168 research outputs found

    QCD at high baryon density in a random matrix model

    Get PDF
    A high density diquark phase seems to be a generic feature of QCD. If so it should also be reproduced by random matrix models. We discuss a specific one in which the random matrix elements of the Dirac operator are supplemented by a finite chemical potential and by non-random elements which model the formation of instanton-anti-instanton molecules. Comparing our results to those found in a previous investigation by Vanderheyden and Jackson we find additional support for our starting assumption, namely that the existence of a high density diquark phase is common to all QCD-like models.Comment: 16 pages, 4 figures, final version to appear in Eur.Phys.J.

    Comparison of heuristic approaches for the multiple depot vehicle scheduling problem

    Get PDF
    Given a set of timetabled tasks, the multi-depot vehicle scheduling problemis a well-known problem that consists of determining least-cost schedulesfor vehicles assigned to several depots such that each task is accomplishedexactly once by a vehicle. In this paper, we propose to compare theperformance of five different heuristic approaches for this problem,namely, a heuristic \\mip solver, a Lagrangian heuristic, a columngeneration heuristic, a large neighborhood search heuristic using columngeneration for neighborhood evaluation, and a tabu search heuristic. Thefirst three methods are adaptations of existing methods, while the last twoare novel approaches for this problem. Computational results on randomlygenerated instances show that the column generation heuristic performs thebest when enough computational time is available and stability is required,while the large neighborhood search method is the best alternative whenlooking for a compromise between computational time and solution quality.tabu search;column generation;vehicle scheduling;heuristics;Lagrangian heuristic;large neighborhood search;multiple depot

    Genome sequence of Christensenella minuta DSM 22607T

    Get PDF
    Obesity influences and is influenced by the human gut microbiome. Here, we present the genome of Christensenella minuta, a highly heritable bacterial species which has been found to be strongly associated with obesity through an unknown biological mechanism. This novel genome provides a valuable resource for future obesity therapeutic studies

    New approach to 4^4He charge distribution

    Get PDF
    We present a study of the 4^4He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the 4^4He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.Comment: 9 pages, LaTeX, 4 figures (Figures 1 and 2 doesn't exist as postscript files : they are only available on request

    Experimental evolution and genome sequencing reveal variation in levels of clonal interference in large populations of bacteriophage φX174

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In large asexual populations where beneficial mutations may co-occur and recombination is absent, the fate of beneficial mutations can be significantly affected by competition (i.e., clonal interference). Theoretical models predict that clonal interference (CI) can slow adaptation, alter the distribution of fixed beneficial mutations, and affect disease progression by impacting within-host evolution of pathogens. While phenotypic data support that CI is a significant determinant of adaptive outcome, genetic data are needed to verify the patterns and to inform evolutionary models. We adapted replicate populations of the bacteriophage φX174 under two levels of CaCl<sub>2 </sub>to create benign and harsh environments. Genomic sequences of multiple individuals from evolved populations were used to detect competing beneficial mutations.</p> <p>Results</p> <p>There were several competing genotypes in most of the populations where CaCl<sub>2 </sub>was abundant, but no evidence of CI where CaCl<sub>2 </sub>was scarce, even though rates of adaptation and population sizes among the treatments were similar. The sequence data revealed that observed mutations were limited to a single portion of one gene in the harsh treatment, but spanned a different and larger region of the genome under the benign treatments, suggesting that there were more adaptive solutions to the benign treatment.</p> <p>Conclusion</p> <p>Beneficial mutations with relatively large selection coefficients can be excluded by CI. CI may commonly determine the fate of beneficial mutations in large microbial populations, but its occurrence depends on selective conditions. CI was more frequent in benign selective conditions possibly due to a greater number of adaptive targets under this treatment. Additionally, the genomic sequence data showed that selection can target different types and numbers of phenotypes in environments that differ by only a single continuous variable.</p

    Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta

    Get PDF
    Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans
    • …
    corecore