528 research outputs found

    Positive cosmological constant in loop quantum cosmology

    Full text link
    The k=0 Friedmann Lemaitre Robertson Walker model with a positive cosmological constant and a massless scalar field is analyzed in detail. If one uses the scalar field as relational time, new features arise already in the Hamiltonian framework of classical general relativity: In a finite interval of relational time, the universe expands out to infinite proper time and zero matter density. In the deparameterized quantum theory, the true Hamiltonian now fails to be essentially self-adjoint both in the Wheeler DeWitt (WDW) approach and in LQC. Irrespective of the choice of the self-adjoint extension, the big bang singularity persists in the WDW theory while it is resolved and replaced by a big bounce in loop quantum cosmology (LQC). Furthermore, the quantum evolution is surprisingly insensitive to the choice of the self-adjoint extension. This may be a special case of an yet to be discovered general property of a certain class of symmetric operators that fail to be essentially self-adjoint.Comment: 36 pages, 6 figures, RevTex

    Dust reference frame in quantum cosmology

    Full text link
    We give a formulation of quantum cosmology with a pressureless dust and arbitrary additional matter fields. The system has the property that its Hamiltonian constraint is linear in the dust momentum. This feature provides a natural time gauge, leading to a physical hamiltonian that is not a square root. Quantization leads to Schr{\"o}dinger equation for which unitary evolution is directly linked to geodesic completeness. Our approach simplifies the analysis of both Wheeler-deWitt and loop quantum cosmology (LQC) models, and significantly broadens the applicability of the latter. This is demonstrated for arbitrary scalar field potential and cosmological constant in LQC.Comment: 8 pages, iopart style + BibTe

    π+π\pi^+ - \pi^- Asymmetry and the Neutron Skin in Heavy Nuclei

    Full text link
    In heavy nuclei the spatial distribution of protons and neutrons is different. At CERN SPS energies production of π+\pi^+ and π\pi^- differs for pppp, pnpn, npnp and nnnn scattering. These two facts lead to an impact parameter dependence of the π+\pi^+ to π\pi^- ratio in 208Pb+208Pb^{208}Pb + ^{208}Pb collisions. A recent experiment at CERN seems to confirm qualitatively these predictions. It may open a possibility for determination of neutron density distribution in nuclei.Comment: 6 pages and 2 figures, a talk by A.Szczurek at the international conference MESON2004, June 4-8, Cracow, Polan

    Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC

    Full text link
    A general quantum constraint of the form C=T2BIHC= - \partial_T^2 \otimes B - I\otimes H (realized in particular in Loop Quantum Cosmology models) is studied. Group Averaging is applied to define the Hilbert space of solutions and the relational Dirac observables. Two cases are considered. In the first case, the spectrum of the operator (1/2)π2BH(1/2)\pi^2 B - H is assumed to be discrete. The quantum theory defined by the constraint takes the form of a Schroedinger-like quantum mechanics with a generalized Hamiltonian B1H\sqrt{B^{-1} H}. In the second case, the spectrum is absolutely continuous and some peculiar asymptotic properties of the eigenfunctions are assumed. The resulting Hilbert space and the dynamics are characterized by a continuous family of the Schroedinger-like quantum theories. However, the relational observables mix different members of the family. Our assumptions are motivated by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases considered in the paper correspond to the negative and, respectively, positive cosmological constant. Our results should be also applicable in many other general relativistic contexts.Comment: RevTex4, 32 page

    Prescriptions in Loop Quantum Cosmology: A comparative analysis

    Get PDF
    Various prescriptions proposed in the literature to attain the polymeric quantization of a homogeneous and isotropic flat spacetime coupled to a massless scalar field are carefully analyzed in order to discuss their differences. A detailed numerical analysis confirms that, for states which are not deep in the quantum realm, the expectation values and dispersions of some natural observables of interest in cosmology are qualitatively the same for all the considered prescriptions. On the contrary, the amplitude of the wave functions of those states differs considerably at the bounce epoch for these prescriptions. This difference cannot be absorbed by a change of representation. Finally, the prescriptions with simpler superselection sectors are clearly more efficient from the numerical point of view.Comment: 18 pages, 6 figures, RevTex4-1 + BibTe

    Degree of entanglement as a physically ill-posed problem: The case of entanglement with vacuum

    Full text link
    We analyze an example of a photon in superposition of different modes, and ask what is the degree of their entanglement with vacuum. The problem turns out to be ill-posed since we do not know which representation of the algebra of canonical commutation relations (CCR) to choose for field quantization. Once we make a choice, we can solve the question of entanglement unambiguously. So the difficulty is not with mathematics, but with physics of the problem. In order to make the discussion explicit we analyze from this perspective a popular argument based on a photon leaving a beam splitter and interacting with two two-level atoms. We first solve the problem algebraically in Heisenberg picture, without any assumption about the form of representation of CCR. Then we take the \infty-representation and show in two ways that in two-mode states the modes are maximally entangled with vacuum, but single-mode states are not entangled. Next we repeat the analysis in terms of the representation of CCR taken from Berezin's book and show that two-mode states do not involve the mode-vacuum entanglement. Finally, we switch to a family of reducible representations of CCR recently investigated in the context of field quantization, and show that the entanglement with vacuum is present even for single-mode states. Still, the degree of entanglement is here difficult to estimate, mainly because there are N+2N+2 subsystems, with NN unspecified and large.Comment: This paper is basically a reply to quant-ph/0507189 by S. J. van Enk and to the remarks we got from L. Vaidman after our preliminary quant-ph/0507151. Version accepted in Phys. Rev.

    Closed FRW model in Loop Quantum Cosmology

    Get PDF
    The basic idea of the LQC applies to every spatially homogeneous cosmological model, however only the spatially flat (so called k=0k=0) case has been understood in detail in the literature thus far. In the closed (so called: k=1) case certain technical difficulties have been the obstacle that stopped the development. In this work the difficulties are overcome, and a new LQC model of the spatially closed, homogeneous, isotropic universe is constructed. The topology of the spacelike section of the universe is assumed to be that of SU(2) or SO(3). Surprisingly, according to the results achieved in this work, the two cases can be distinguished from each other just by the local properties of the quantum geometry of the universe. The quantum hamiltonian operator of the gravitational field takes the form of a difference operator, where the elementary step is the quantum of the 3-volume derived in the flat case by Ashtekar, Pawlowski and Singh. The mathematical properties of the operator are studied: it is essentially self-adjoint, bounded from above by 0, the 0 itself is not an eigenvalue, the eigenvectors form a basis. An estimate on the dimension of the spectral projection on any finite interval is provided.Comment: 19 pages, latex, no figures, high quality, nea
    corecore