19 research outputs found

    Neural Discovery of Permutation Subgroups

    Full text link
    We consider the problem of discovering subgroup HH of permutation group SnS_{n}. Unlike the traditional HH-invariant networks wherein HH is assumed to be known, we present a method to discover the underlying subgroup, given that it satisfies certain conditions. Our results show that one could discover any subgroup of type Sk(k≀n)S_{k} (k \leq n) by learning an SnS_{n}-invariant function and a linear transformation. We also prove similar results for cyclic and dihedral subgroups. Finally, we provide a general theorem that can be extended to discover other subgroups of SnS_{n}. We also demonstrate the applicability of our results through numerical experiments on image-digit sum and symmetric polynomial regression tasks

    A Unified Framework for Discovering Discrete Symmetries

    Full text link
    We consider the problem of learning a function respecting a symmetry from among a class of symmetries. We develop a unified framework that enables symmetry discovery across a broad range of subgroups including locally symmetric, dihedral and cyclic subgroups. At the core of the framework is a novel architecture composed of linear and tensor-valued functions that expresses functions invariant to these subgroups in a principled manner. The structure of the architecture enables us to leverage multi-armed bandit algorithms and gradient descent to efficiently optimize over the linear and the tensor-valued functions, respectively, and to infer the symmetry that is ultimately learnt. We also discuss the necessity of the tensor-valued functions in the architecture. Experiments on image-digit sum and polynomial regression tasks demonstrate the effectiveness of our approach

    Adapt then Unlearn: Exploiting Parameter Space Semantics for Unlearning in Generative Adversarial Networks

    Full text link
    The increased attention to regulating the outputs of deep generative models, driven by growing concerns about privacy and regulatory compliance, has highlighted the need for effective control over these models. This necessity arises from instances where generative models produce outputs containing undesirable, offensive, or potentially harmful content. To tackle this challenge, the concept of machine unlearning has emerged, aiming to forget specific learned information or to erase the influence of undesired data subsets from a trained model. The objective of this work is to prevent the generation of outputs containing undesired features from a pre-trained GAN where the underlying training data set is inaccessible. Our approach is inspired by a crucial observation: the parameter space of GANs exhibits meaningful directions that can be leveraged to suppress specific undesired features. However, such directions usually result in the degradation of the quality of generated samples. Our proposed method, known as 'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also maintaining the quality of generated samples. This method unfolds in two stages: in the initial stage, we adapt the pre-trained GAN using negative samples provided by the user, while in the subsequent stage, we focus on unlearning the undesired feature. During the latter phase, we train the pre-trained GAN using positive samples, incorporating a repulsion regularizer. This regularizer encourages the model's parameters to be away from the parameters associated with the adapted model from the first stage while also maintaining the quality of generated samples. To the best of our knowledge, our approach stands as first method addressing unlearning in GANs. We validate the effectiveness of our method through comprehensive experiments.Comment: 15 pages, 12 figure

    Guided Prompting in SAM for Weakly Supervised Cell Segmentation in Histopathological Images

    Full text link
    Cell segmentation in histopathological images plays a crucial role in understanding, diagnosing, and treating many diseases. However, data annotation for this is expensive since there can be a large number of cells per image, and expert pathologists are needed for labelling images. Instead, our paper focuses on using weak supervision -- annotation from related tasks -- to induce a segmenter. Recent foundation models, such as Segment Anything (SAM), can use prompts to leverage additional supervision during inference. SAM has performed remarkably well in natural image segmentation tasks; however, its applicability to cell segmentation has not been explored. In response, we investigate guiding the prompting procedure in SAM for weakly supervised cell segmentation when only bounding box supervision is available. We develop two workflows: (1) an object detector's output as a test-time prompt to SAM (D-SAM), and (2) SAM as pseudo mask generator over training data to train a standalone segmentation model (SAM-S). On finding that both workflows have some complementary strengths, we develop an integer programming-based approach to reconcile the two sets of segmentation masks, achieving yet higher performance. We experiment on three publicly available cell segmentation datasets namely, ConSep, MoNuSeg, and TNBC, and find that all SAM-based solutions hugely outperform existing weakly supervised image segmentation models, obtaining 9-15 pt Dice gains

    SCLAiR : Supervised Contrastive Learning for User and Device Independent Airwriting Recognition

    Full text link
    Airwriting Recognition is the problem of identifying letters written in free space with finger movement. It is essentially a specialized case of gesture recognition, wherein the vocabulary of gestures corresponds to letters as in a particular language. With the wide adoption of smart wearables in the general population, airwriting recognition using motion sensors from a smart-band can be used as a medium of user input for applications in Human-Computer Interaction. There has been limited work in the recognition of in-air trajectories using motion sensors, and the performance of the techniques in the case when the device used to record signals is changed has not been explored hitherto. Motivated by these, a new paradigm for device and user-independent airwriting recognition based on supervised contrastive learning is proposed. A two stage classification strategy is employed, the first of which involves training an encoder network with supervised contrastive loss. In the subsequent stage, a classification head is trained with the encoder weights kept frozen. The efficacy of the proposed method is demonstrated through experiments on a publicly available dataset and also with a dataset recorded in our lab using a different device. Experiments have been performed in both supervised and unsupervised settings and compared against several state-of-the-art domain adaptation techniques. Data and the code for our implementation will be made available at https://github.com/ayushayt/SCLAiR
    corecore