677 research outputs found
Critical behavior of a Ginzburg-Landau model with additive quenched noise
We address a mean-field zero-temperature Ginzburg-Landau, or \phi^4, model
subjected to quenched additive noise, which has been used recently as a
framework for analyzing collective effects induced by diversity. We first make
use of a self-consistent theory to calculate the phase diagram of the system,
predicting the onset of an order-disorder critical transition at a critical
value {\sigma}c of the quenched noise intensity \sigma, with critical exponents
that follow Landau theory of thermal phase transitions. We subsequently perform
a numerical integration of the system's dynamical variables in order to compare
the analytical results (valid in the thermodynamic limit and associated to the
ground state of the global Lyapunov potential) with the stationary state of the
(finite size) system. In the region of the parameter space where metastability
is absent (and therefore the stationary state coincide with the ground state of
the Lyapunov potential), a finite-size scaling analysis of the order parameter
fluctuations suggests that the magnetic susceptibility diverges quadratically
in the vicinity of the transition, what constitutes a violation of the
fluctuation-dissipation relation. We derive an effective Hamiltonian and
accordingly argue that its functional form does not allow to straightforwardly
relate the order parameter fluctuations to the linear response of the system,
at odds with equilibrium theory. In the region of the parameter space where the
system is susceptible to have a large number of metastable states (and
therefore the stationary state does not necessarily correspond to the ground
state of the global Lyapunov potential), we numerically find a phase diagram
that strongly depends on the initial conditions of the dynamical variables.Comment: 8 figure
Collective motion of active Brownian particles in one dimension
We analyze a model of active Brownian particles with non-linear friction and
velocity coupling in one spatial dimension. The model exhibits two modes of
motion observed in biological swarms: A disordered phase with vanishing mean
velocity and an ordered phase with finite mean velocity. Starting from the
microscopic Langevin equations, we derive mean-field equations of the
collective dynamics. We identify the fixed points of the mean-field equations
corresponding to the two modes and analyze their stability with respect to the
model parameters. Finally, we compare our analytical findings with numerical
simulations of the microscopic model.Comment: submitted to Eur. Phys J. Special Topic
Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) will be an instrument covering a wide
energy range in very-high-energy (VHE) gamma rays. CTA will include several
types of telescopes, in order to optimize the performance over the whole energy
range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets
(including many different possible CTA layouts as sub-sets) and smaller-scale
simulations dedicated to individual aspects were carried out and are on-going.
We summarize results of the prior round of large-scale simulations, show where
the design has now evolved beyond the conservative assumptions of the prior
round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Expected performance of the ASTRI-SST-2M telescope prototype
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is an
Italian flagship project pursued by INAF (Istituto Nazionale di Astrofisica)
strictly linked to the development of the Cherenkov Telescope Array, CTA.
Primary goal of the ASTRI program is the design and production of an end-to-end
prototype of a Small Size Telescope for the CTA sub-array devoted to the
highest gamma-ray energy region. The prototype, named ASTRI SST-2M, will be
tested on field in Italy during 2014. This telescope will be the first
Cherenkov telescope adopting the double reflection layout in a
Schwarzschild-Couder configuration with a tessellated primary mirror and a
monolithic secondary mirror. The collected light will be focused on a compact
and light-weight camera based on silicon photo-multipliers covering a 9.6 deg
full field of view. Detailed Monte Carlo simulations have been performed to
estimate the performance of the planned telescope. The results regarding its
energy threshold, sensitivity and angular resolution are shown and discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles
Mkn 421 was observed during a high flux state for nine nights in April and
May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.)
in Namibia. The observations were carried out at zenith angles of
60--65, which result in an average energy threshold of 1.5 TeV
and a collection area reaching 2~km at 10~TeV. Roughly 7000 photons from
Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The
overall significance of the detection exceeds 100 standard deviations. The
light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux
up to a factor of 4.3. For nights of high flux, intra-night variability is
detected with a decay time of less than 1 hour. The time averaged energy
spectrum is curved and is well described by a power-law with a photon index
\egamm and an exponential cutoff at \ecut~TeV and an average integral flux
above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape
are detected with a spectral hardening as the flux increases. Contemporaneous
multi-wavelength observations at lower energies (X-rays and gamma-rays above
~GeV) indicate smaller relative variability amplitudes than seen
above 2~TeV during high flux state observed in April 2004.Comment: 5 pages, 4 figures, published in A&
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at TeV and a spectral index of ~. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to 0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of ~100G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of ~1.7 would be required, which
implies that ~erg has been transferred into
high-energy protons with the effective density cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
H.E.S.S. observations of gamma-ray bursts in 2003-2007
Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray
bursts (GRBs) in some scenarios. Exploring this photon energy regime is
necessary for understanding the energetics and properties of GRBs. GRBs have
been one of the prime targets for the H.E.S.S. experiment, which makes use of
four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays.
Dedicated observations of 32 GRB positions were made in the years 2003-2007 and
a search for VHE gamma-ray counterparts of these GRBs was made. Depending on
the visibility and observing conditions, the observations mostly start minutes
to hours after the burst and typically last two hours. Results from
observations of 22 GRB positions are presented and evidence of a VHE signal was
found neither in observations of any individual GRBs, nor from stacking data
from subsets of GRBs with higher expected VHE flux according to a
model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from
the GRB positions were derived. For those GRBs with measured redshifts,
differential upper limits at the energy threshold after correcting for
absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure
First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula
The Vela supernova remnant (SNR) is a complex region containing a number of
sources of non-thermal radiation. The inner section of this SNR, within 2
degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray
atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from
an extended region to the south of the pulsar, within an integration region of
radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36'
J2000.0). The excess coincides with a region of hard X-ray emission seen by the
ROSAT and ASCA satellites. The observed energy spectrum of the source between
550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45
+/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/-
2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17
(stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear
measurement of a peak in the spectral energy distribution from a VHE gamma-ray
source, likely related to inverse Compton emission. A fit of an Inverse Compton
model to the H.E.S.S. spectral energy distribution gives a total energy in
non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a
distance of 290 parsec to the pulsar. The best fit electron power law index is
2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics letter
- …