21 research outputs found

    Atom interferometer as a selective sensor of rotation or gravity

    Full text link
    In the presence of Earth gravity and gravity-gradient forces, centrifugal and Coriolis forces caused by the Earth rotation, the phase of the time-domain atom interferometers is calculated with accuracy up to the terms proportional to the fourth degree of the time separation between pulses. We considered double-loop atom interferometers and found appropriate condition to eliminate their sensitivity to acceleration to get atomic gyroscope, or to eliminate the sensitivity to rotation to increase accuracy of the atomic gravimeter. Consequent use of these interferometers allows one to measure all components of the acceleration and rotation frequency projection on the plane perpendicular to gravity acceleration. Atom interference on the Raman transition driving by noncounterpropagating optical fields is proposed to exclude stimulated echo processes which can affect the accuracy of the atomic gyroscopes. Using noncounterpropagating optical fields allows one to get a new type of the Ramsey fringes arising in the unidirectional Raman pulses and therefore centered at the two-quantum line center. Density matrix in the Wigner representation is used to perform calculations. It is shown that in the time between pulses, in the noninertial frame, for atoms with fully quantized spatial degrees of freedom, this density matrix obeys classical Liouville equations.Comment: 21 pages, 4 figures, extended references, discussion, and motivatio

    Observation of Large Atomic-Recoil Induced Asymmetries in Cold Atom Spectroscopy

    Full text link
    The atomic recoil effect leads to large (25 %) asymmetries in simple spectroscopic investigations of Ca atoms that have been laser-cooled to 10 microkelvin. Starting with spectra from the more familiar Doppler-broadened domain, we show how the fundamental asymmetry between absorption and stimulated emission of light manifests itself when shorter spectroscopic pulses lead to the Fourier transform regime. These effects occur on frequency scales much larger than the size of the recoil shift itself, and have not been observed before in saturation spectroscopy. These results are relevant to state-of-the-art optical atomic clocks based on freely expanding neutral atoms.Comment: 4 pages, 3 figure
    corecore