3,274 research outputs found

    Behaviour of the energy gap in a model of Josephson coupled Bose-Einstein condensates

    Full text link
    In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunneling. The energy gap is never zero when the tunneling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalised phase from a self-trapping phase which occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Analytic expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.Comment: 12 pages, 5 .eps figures + 4 figs, classical analysis, perturbation theor

    Magnetic Susceptibility of an integrable anisotropic spin ladder system

    Full text link
    We investigate the thermodynamics of a spin ladder model which possesses a free parameter besides the rung and leg couplings. The model is exactly solved by the Bethe Ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. A connection with the compounds KCuCl3, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4 in the strong coupling regime is made and our results for the magnetic susceptibility fit the experimental data remarkably well.Comment: 12 pages, 12 figures included, submitted to Phys. Rev.

    Integrable multiparametric quantum spin chains

    Full text link
    Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions. We illustrate how this general formalism applies to construct multiparametric versions of the supersymmetric t-J and U models.Comment: 17 pages, RevTe

    Violation of the string hypothesis and Heisenberg XXZ spin chain

    Full text link
    In this paper we count the numbers of real and complex solutions to Bethe constraints in the two particle sector of the XXZ model. We find exact number of exceptions to the string conjecture and total number of solutions which is required for completeness.Comment: 15 pages, 7 Postscript figure

    A Majorana Fermion t-J Model in One Dimension

    Get PDF
    We study a rotation invariant Majorana fermion model in one dimension using diagrammatic perturbation theory and numerical diagonalization of small systems. The model is inspired by a Majorana representation of the antiferromagnetic spin-1/2 chain, and it is similar in form to the t-J model of electrons, except that the Majorana fermions carry spin-1 and Z_2 charge. We discuss the implications of our results for the low-energy excitations of the spin-1/2 chain. We also discuss a generalization of our model from 3 species of Majorana fermions to N species; the SO(4) symmetric model is particularly interesting.Comment: 29 LaTeX pages, 11 postscript figure

    Integrable mixing of A_{n-1} type vertex models

    Full text link
    Given a family of monodromy matrices {T_u; u=0,1,...,K-1} corresponding to integrable anisotropic vertex models of A_{(n_u)-1}-type, we build up a related mixed vertex model by means of glueing the lattices on which they are defined, in such a way that integrability property is preserved. Algebraically, the glueing process is implemented through one dimensional representations of rectangular matrix algebras A(R_p,R_q), namely, the `glueing matrices' zeta_u. Here R_n indicates the Yang-Baxter operator associated to the standard Hopf algebra deformation of the simple Lie algebra A_{n-1}. We show there exists a pseudovacuum subspace with respect to which algebraic Bethe ansatz can be applied. For each pseudovacuum vector we have a set of nested Bethe ansatz equations identical to the ones corresponding to an A_{m-1} quasi-periodic model, with m equal to the minimal range of involved glueing matrices.Comment: REVTeX 28 pages. Here we complete the proof of integrability for mixed vertex models as defined in the first versio

    Integrability of a t-J model with impurities

    Full text link
    A t-J model for correlated electrons with impurities is proposed. The impurities are introduced in such a way that integrability of the model in one dimension is not violated. The algebraic Bethe ansatz solution of the model is also given and it is shown that the Bethe states are highest weight states with respect to the supersymmetry algebra gl(2/1)Comment: 14 page

    Transfer matrix eigenvalues of the anisotropic multiparametric U model

    Full text link
    A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying Uq(sl(2|1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.Comment: 26 pages, no figures, LaTe

    Evidence for multiband superconductivity in the heavy fermion compound UNi2Al3

    Full text link
    Epitaxial thin films of the heavy fermion superconductor UNi2Al3 with Tc{max}=0.98K were investigated. The transition temperature Tc depends on the current direction which can be related to superconducting gaps opening at different temperatures. Also the influence of the magnetic ordering at TN=5K on R(T) is strongly anisotropic indicating different coupling between the magnetic moments and itinerant charge carriers on the multi-sheeted Fermi surface. The upper critical field Hc2(T) suggests an unconventional spin-singlet superconducting state.Comment: 4 pages, 6 figures revised version: inset of fig. 2 changed, fig. 3 added accepted for pub. in Phys. Rev. Lett. (estimated 9/04
    corecore