5,481 research outputs found
The Evolution of NGC 7027 at Radio Frequencies: A New Determination of the Distance and Core Mass
We present the results of a 25-year program to monitor the radio flux
evolution of the planetary nebula NGC7027. We find significant evolution of the
spectral flux densities. The flux density at 1465 MHz, where the nebula is
optically thick, is increasing at a rate of 0.251+-0.015 % per year, caused by
the expansion of the ionized nebula. At frequencies where the emission is
optically thin, the spectral flux density is changing at a rate of
-0.145+-0.005 % per year, caused by a decrease in the number of ionizing
photons coming from the central star. A distance of 980+-100 pc is derived. By
fitting interpolated models of post-AGB evolution to the observed changes, we
find that over the 25-yr monitoring period, the stellar temperature has
increased by 3900+-900 K and the stellar bolometric luminosity has decreased by
1.75+-0.38 %. We derive a distance-independent stellar mass of 0.655+-0.01
solar masses adopting the Bloecker stellar evolution models, or about 0.04
solar masses higher when using models of Vassiliadis & Wood which may provide a
better fit. A Cloudy photoionization model is used to fit all epochs at all
frequencies simultaneously. The differences between the radio flux density
predictions and the observed values show some time-independent residuals of
typically 1 %. A possible explanation is inaccuracies in the radio flux scale
of Baars et al. We propose an adjustment to the flux density scale of the
primary radio flux calibrator 3C286, based on the Cloudy model of NGC7027. We
also calculate precise flux densities for NGC7027 for all standard continuum
bands used at the VLA, as well as for some new 30GHz experiments.Comment: submitted to the Astrophysical Journa
Perturbation theory for self-gravitating gauge fields I: The odd-parity sector
A gauge and coordinate invariant perturbation theory for self-gravitating
non-Abelian gauge fields is developed and used to analyze local uniqueness and
linear stability properties of non-Abelian equilibrium configurations. It is
shown that all admissible stationary odd-parity excitations of the static and
spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have
total angular momentum number , and are characterized by
non-vanishing asymptotic flux integrals. Local uniqueness results with respect
to non-Abelian perturbations are also established for the Schwarzschild and the
Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly
stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable
modes with are also excluded for the static and spherically
symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure
The MRAMOR Workstation
Abstract. The paper describes the experience of creating the MRAMOR workstation in 1980-1987, a quality workspace for the publishing business built on a weak element basis. The aim of the work consisted in the creation of hardand-software foundation and a system of workspaces for professional publishers. This accounted for the initially complex approach to the problem, which combined hardware, software, font, and visual design. We produced a pilot batch of forty workspaces, basic program software for the station, and application software for workspaces of professional publishing systems for electronic publication preparation. These convenient and highly effective workspaces went into test operation and they served to produce a large number of publications of high polygraph quality
Stable monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter Space
A continuum of new monopole and dyon solutions in the Einstein-Yang-Mills
theory in asymptotically anti-de Sitter space are found. They are regular
everywhere and specified with their mass, and non-Abelian electric and magnetic
charges. A class of monopole solutions which have no node in non-Abelian
magnetic fields are shown to be stable against spherically symmetric linear
perturbations.Comment: 9 pages with 5 figures. Revised version. To appear in Phys Rev Let
Advanced Hough-based method for on-device document localization
The demand for on-device document recognition systems increases in
conjunction with the emergence of more strict privacy and security
requirements. In such systems, there is no data transfer from the end device to
a third-party information processing servers. The response time is vital to the
user experience of on-device document recognition. Combined with the
unavailability of discrete GPUs, powerful CPUs, or a large RAM capacity on
consumer-grade end devices such as smartphones, the time limitations put
significant constraints on the computational complexity of the applied
algorithms for on-device execution.
In this work, we consider document location in an image without prior
knowledge of the document content or its internal structure. In accordance with
the published works, at least 5 systems offer solutions for on-device document
location. All these systems use a location method which can be considered
Hough-based. The precision of such systems seems to be lower than that of the
state-of-the-art solutions which were not designed to account for the limited
computational resources.
We propose an advanced Hough-based method. In contrast with other approaches,
it accounts for the geometric invariants of the central projection model and
combines both edge and color features for document boundary detection. The
proposed method allowed for the second best result for SmartDoc dataset in
terms of precision, surpassed by U-net like neural network. When evaluated on a
more challenging MIDV-500 dataset, the proposed algorithm guaranteed the best
precision compared to published methods. Our method retained the applicability
to on-device computations.Comment: This is a preprint of the article submitted for publication in the
journal "Computer Optics
Porous matrixes based on ion-irradiated polymer as templates for synthesis of nanowires
Irradiation with swift heavy ions is usually used for production of track membranes
(nuclear filters). These membranes traditionally used as filters for fine filtration
in medicine and biology.
Another application is matrixes for so called matrix synthesis. The idea of this
technique is to fill pores by any desired material- metal,polymer, semiconductor and so
on.
This work is devoted to formation of membrane for template synthesis, to investigation
of filling process and to study some properties of obtained structures.
It was found that filtration track membranes are not the best material for template
synthesis –another type of matrixes are needed- with different pores profiles and parallel
pores orientation These parameters could be obtained during irradiation. Different
types of etching gave possibility to vary by will the shape of the pores and to obtain
pores with conical shape. The process of etching in the alkali solution in mixture of
water and alcohol was investigated.
The main part of the work devoted to fabrication of micro- and nanowires via electrodeposition.
Different types of metals-copper, silver, cobalt and nickel were used for
galvanic deposition of the pores. Two types of the processes- galvanostatic and potentiostatic
were investigated.
It was also demonstrated that obtained metallic nanowires could be used as the
substrates for deposition of the probe (biological molecules) in mass-spectrometer.
The application of such structures in non-linear optic was also described.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2083
Monopoles, Dyons and Black Holes in the Four-Dimensional Einstein-Yang-Mills Theory
A continuum of monopole, dyon and black hole solutions exist in the
Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their
structure is studied in detail. The solutions are classified by non-Abelian
electric and magnetic charges and the ADM mass. The stability of the solutions
which have no node in non-Abelian magnetic fields is established. There exist
critical spacetime solutions which terminate at a finite radius, and have
universal behavior. The moduli space of the solutions exhibits a fractal
structure as the cosmological constant approaches zero.Comment: 36 Pages, 16 Figures. Minor typos corrected and one figure modifie
Unfolder: Fast localization and image rectification of a document with a crease from folding in half
Presentation of folded documents is not an uncommon case in modern society.
Digitizing such documents by capturing them with a smartphone camera can be
tricky since a crease can divide the document contents into separate planes. To
unfold the document, one could hold the edges potentially obscuring it in a
captured image. While there are many geometrical rectification methods, they
were usually developed for arbitrary bends and folds. We consider such
algorithms and propose a novel approach Unfolder developed specifically for
images of documents with a crease from folding in half. Unfolder is robust to
projective distortions of the document image and does not fragment the image in
the vicinity of a crease after rectification. A new Folded Document Images
dataset was created to investigate the rectification accuracy of folded (2, 3,
4, and 8 folds) documents. The dataset includes 1600 images captured when
document placed on a table and when held in hand. The Unfolder algorithm
allowed for a recognition error rate of 0.33, which is better than the advanced
neural network methods DocTr (0.44) and DewarpNet (0.57). The average runtime
for Unfolder was only 0.25 s/image on an iPhone XR.Comment: This is a preprint of the article accepted for publication in the
journal "Computer Optics
Gravitating sphalerons and sphaleron black holes in asymptotically anti-de Sitter spacetime
Numerical arguments are presented for the existence of spherically symmetric
regular and black hole solutions of the EYMH equations with a negative
cosmological constant. These solutions approach asymptotically the anti-de
Sitter spacetime. The main properties of the solutions and the differences with
respect to the asymptotically flat case are discussed. The instability of the
gravitating sphaleron solutions is also proven.Comment: 30 pages, LaTeX, 8 Encapsulated PostScript figure
Excitations in the Halo Nucleus He-6 Following The Li-7(gamma,p)He-6 Reaction
A broad excited state was observed in 6-He with energy E_x = 5 +/- 1 MeV and
width Gamma = 3 +/- 1 MeV, following the reaction Li-7(gamma,p)He-6. The state
is consistent with a number of broad resonances predicted by recent cluster
model calculations. The well-established reaction mechanism, combined with a
simple and transparent analysis procedure confers considerable validity to this
observation.Comment: 3 pages of LaTeX, 3 figures in PostScript, approved for publication
in Phys. Rev. C, August, 200
- …