83,116 research outputs found

    Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant

    Full text link
    We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017), as well by the planned high-resolution spectrograph (currently in Phase A) for the European Extremely Large Telescope. Assuming a fiducial model without α\alpha variations, we show that ESPRESSO can improve current bounds on the E\"{o}tv\"{o}s parameter---which quantifies Weak Equivalence Principle violations---by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α\alpha variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.Comment: Phys. Lett. B (in press

    Low redshift constraints on energy-momentum-powered gravity models

    Full text link
    There has been recent interest in the cosmological consequences of energy-momentum-powered gravity models, in which the matter side of Einstein's equations is modified by the addition of a term proportional to some power, nn, of the energy-momentum tensor, in addition to the canonical linear term. In this work we treat these models as phenomenological extensions of the standard Λ\LambdaCDM, containing both matter and a cosmological constant. We also quantitatively constrain the additional model parameters using low redshift background cosmology data that are specifically from Type Ia supernovas and Hubble parameter measurements. We start by studying specific cases of these models with fixed values of n,n, which lead to an analytic expression for the Friedmann equation; we discuss both their current constraints and how the models may be further constrained by future observations of Type Ia supernovas for WFIRST complemented by measurements of the redshift drift by the ELT. We then consider and constrain a more extended parameter space, allowing nn to be a free parameter and considering scenarios with and without a cosmological constant. These models do not solve the cosmological constant problem per se. Nonetheless these models can phenomenologically lead to a recent accelerating universe without a cosmological constant at the cost of having a preferred matter density of around ΩM∼0.4\Omega_M\sim0.4 instead of the usual ΩM∼0.3\Omega_M\sim0.3. Finally we also briefly constrain scenarios without a cosmological constant, where the single component has a constant equation of state which needs not be that of matter; we provide an illustrative comparison of this model with a more standard dynamical dark energy model with a constant equation of state.Comment: 13+2 pages, 12+1 figures; A&A (in press

    Spontaneous CP violation in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the mechanism of spontaneous CP violation in the 3-3-1 model with right-handed neutrinos and recognize their sources of CP violation. Our main result is that the mechanism works already in the minimal version of the model and new sources of CP violation emerges as an effect of new physics at energies higher than the electroweak scale.Comment: Major changes in the quark sector, electronic dipole moment of the neutron was evaluated, accepted for publication in the physical review

    Confinement in the 3-dimensional Gross-Neveu model

    Full text link
    We consider the NN-components 3-dimensional massive Gross-Neveu model compactified in one spatial direction, the system being constrained to a slab of thickness LL. We derive a closed formula for the effective renormalized LL-dependent coupling constant in the large-N limit, using bag-model boundary conditions. For values of the fixed coupling constant in absence of boundaries λ≥λc≃19.16\lambda \geq \lambda_c \simeq 19.16, we obtain ultra-violet asymptotic freedom (for L→0L \to 0) and confinement for a length L(c)L^{(c)} such that 2.07m−1<L(c)≲2.82m−12.07 m^{-1} < L^{(c)} \lesssim 2.82 m^{-1}, mm being the fermionic mass. Taking for mm an average of the masses of the quarks composing the proton, we obtain a confining legth Lp(c)L^{(c)}_p which is comparable with an estimated proton diameter.Comment: Latex, 4 pages, 2 figures (one new), some changes in tex
    • …
    corecore