6 research outputs found

    Analog Pulse Shape Discrimination Based on Time Duration and Pulse Height

    No full text
    Pulse shape discrimination is a name of a group of techniques used to detect and distinguish between different types of radiation interactions. Analog pulse shape discrimination methods can be more suitable than digital methods, for high-speed scintillators both from rate and power consumption perspectives. Common analog discrimination methods are based on pulse-height and pulse-energy discrimination techniques. Other techniques rely on the time difference in the pulse width such as the ZeroCrossing methods. Neither of the above combine both amplitude and time methods. We present a novel analog pulse shape discrimination topology that combines both height and time domain. The topology is based on discrimination according to the pulse duration in time combined with compensation function of the pulse height. Amplitude of the pulse is used as a restraining factor. Subsequently, our topology correctly identifies fast pulses that are prolonged in time due to their high amplitude. The topology yields superior discrimination capabilities, under degraded light collection conditions, with an uncertainty gap smaller than 1 ns in pulse width. The ability to control both the time and the amplitude parameters individually, provides tailored adjustment for various detectors and pulse shape discrimination applications

    Improving Activity Estimation in Passive Gamma Scanning for Radioactive Waste Drums

    No full text
    A method to improve radioactive waste drum activity estimation in Segmented Gamma Scanning (SGS) systems was developed for homogenous content. We describe a method to quantify the activity of spatially distributed gamma-emitting isotopes (‘hot spots’) in homogenous content waste drums without the use of a collimator. Instead of averaging all the detector's readings we treat it as many different spatial samples as if we have multiple detectors surrounding the waste drum ("virtual detectors"). From these readings, we form a general linear model. Next, we derive the Maximum Likelihood Estimator (MLE) for the multiple sources position and activity. We solve this hyper-dimensional search problem using an Alternating Projections (AP) technique which transforms the problem into a simpler one-dimensional maximization problem. We tested this method using a mathematical simulation with a various number of sources, at random activities and positions for several energy bands. The preliminary results are consistent and show large improvement of the accuracy with comparison to industrial SGS systems and the same accuracy as new methods which exploits the spatial samples. Furthermore, since this method eliminates the need for heavy led collimator, none of the sources is blocked for the whole measurement period, which provides increased count rates and decreases the total measurement time

    Improving Activity Estimation in Passive Gamma Scanning for Radioactive Waste Drums

    Get PDF
    A method to improve radioactive waste drum activity estimation in Segmented Gamma Scanning (SGS) systems was developed for homogenous content. We describe a method to quantify the activity of spatially distributed gamma-emitting isotopes (‘hot spots’) in homogenous content waste drums without the use of a collimator. Instead of averaging all the detector's readings we treat it as many different spatial samples as if we have multiple detectors surrounding the waste drum ("virtual detectors"). From these readings, we form a general linear model. Next, we derive the Maximum Likelihood Estimator (MLE) for the multiple sources position and activity. We solve this hyper-dimensional search problem using an Alternating Projections (AP) technique which transforms the problem into a simpler one-dimensional maximization problem. We tested this method using a mathematical simulation with a various number of sources, at random activities and positions for several energy bands. The preliminary results are consistent and show large improvement of the accuracy with comparison to industrial SGS systems and the same accuracy as new methods which exploits the spatial samples. Furthermore, since this method eliminates the need for heavy led collimator, none of the sources is blocked for the whole measurement period, which provides increased count rates and decreases the total measurement time

    Spectral Enhancement of a SiPM Array-Based Radiation Detector

    No full text
    Silicon Photomultipliers (SiPMs) have many advantages when used in radiation detectors. Low bias voltage, compactness and immunity to electromagnetic interference are among their prominent benefits. However, due to their small size, usually an array of SiPM components is required in order to cover the coupling surface area of a scintillator. Since the SiPM is a semiconductor, biased in a reversed voltage, gain variation and strong temperature dependence are introduced. As a result, SiPM-based detectors, particularly an array of SiPMs, undergo spectral signal to noise ratio reduction. This work studies the effect of the SiPM breakdown voltage variation on the obtained energy spectrum and proposes an electronic approach to overcome this technological drawback. This developed technology provides an adequate temperature-dependent, commonly distributed high bias voltage and an individual offset-voltage fine tuning that enables adjustment of all the SiPM components to their optimum operating points. Powerwise it is beneficial to operate SiPM at lower voltages, where undesirable gain variation is more dominant. The proposed solution enables working at lower bias voltages, which provides lower power consumption and better radiation hardness, while yielding an enhanced spectrum resolution. The proposed electronic approach enhances the obtained spectra, reducing the noise threshold by 16 % when working at 1 V overvoltage. Hence provides an enhanced signal to noise ratio over the traditional biasing methods
    corecore