446 research outputs found

    Feedback-controlled laser ablation for cancer treatment: comparison of On-Off and PID control strategies

    Get PDF
    : Laser ablation is a rising technique used to induce a localized temperature increment for tumor ablation. The outcomes of the therapy depend on the tissue thermal history. Monitoring devices help to assess the tissue thermal response, and their combination with a control strategy can be used to promptly address unexpected temperature changes and thus reduce unwanted thermal effects. In this application, numerical simulations can drive the selection of the laser control settings (i.e., laser power and gain parameters) and allow evaluating the thermal effects of the control strategies. In this study, the influence of different control strategies (On-Off and PID-based controls) is quantified considering the treatment time and the thermal effect on the tissue. Finite element model-based simulations were implemented to model the laser-tissue interaction, the heat-transfer, and the consequent thermal damage in liver tissue with tumor. The laser power was modulated based on the temperature feedback provided within the tumor safety margin. Results show that the chosen control strategy does not have a major influence on the extent of thermal damage but on the treatment duration; the percentage of necrosis within the tumor domain is 100% with both strategies, while the treatment duration is 630 s and 786 s for On-Off and PID, respectively. The choice of the control strategy is a trade-off between treatment duration and unwanted temperature overshoot during closed-loop laser ablation. Clinical Relevance-This work establishes that different temperature-based control of the laser ablation procedure does not have a major influence on the extent of thermal damage but on the duration of treatment

    Mixed-Integer MPC Strategies for Fueling and Density Control in Fusion Tokamaks

    Full text link
    Model predictive control (MPC) is promising for fueling and core density feedback control in nuclear fusion tokamaks, where the primary actuators, frozen hydrogen fuel pellets fired into the plasma, are discrete. Previous density feedback control approaches have only approximated pellet injection as a continuous input due to the complexity that it introduces. In this letter, we model plasma density and pellet injection as a hybrid system and propose two MPC strategies for density control: mixed-integer (MI) MPC using a conventional mixed-integer programming (MIP) solver and MPC utilizing our novel modification of the penalty term homotopy (PTH) algorithm. By relaxing the integer requirements, the PTH algorithm transforms the MIP problem into a series of continuous optimization problems, reducing computational complexity. Our novel modification to the PTH algorithm ensures that it can handle path constraints, making it viable for constrained hybrid MPC in general. Both strategies perform well with regards to reference tracking without violating path constraints and satisfy the computation time limit for real-time control of the pellet injection system. However, the computation time of the PTH-based MPC strategy consistently outpaces the conventional MI-MPC strategy

    Tamani grass-legume intercropping can improve productivity and composition of fodder destined to haylage or hay.

    Get PDF
    This research evaluated the biomass productivity and nutritional value of the haylage and hay from intercropping between Tamani grass and different legume species. For the productive characteristics of the different intercrops, we adopted a randomized block design, for evaluation of the combination of intercropping and conservation technic we used 5 x 2 factorial scheme (five intercrops and two types of conservation techniques). The treatments were Tamani grass as monoculture, and the intercrops of Tamani grass with crotalaria, soybean, cowpea, or pigeon pea. The conservation techniques were haylage (520 g/kg of DM) and hay (870 g/kg of DM). Plants were sown in alternate rows, with 45 cm of spacing between the rows. The parameters evaluated were grass and legume biomass production, canopy height, and haylage and hay chemical composition, and in vitro dry matter digestibility (ivDMD). There were no differences in the total biomass production between the intercrops and TA grass monoculture. The treatments intercropped with cowpea and soybean had the highest legume participation in the mixture, promoting an increase in crude protein and ivDMD content of haylage and hay. Haylage and hay had the same chemical composition, although haylage had higher ivDMD than hay. We concluded that intercropping Tamani grass with soybeans or cowpea maintained total biomass productivity and improved the nutritional value of haylage and ha

    Is organic fertilizer application a viable alternative to synthetic fertilizer for Piatã grass.

    Get PDF
    Organic fertilizer in many cases can replace mineral fertilizers and in consequence reduce production costs and improve soil quality. Thus, the aim of this work was to evaluate productive, morphogenic and structural characteristics of Piatã grass (Urochloa brizantha) fertilized with urea, organic compost and biofertilizer throughout a year. The trial design was a block split-plot in time (seasons) design with 4 treatments (fertilizing with urea, organic compost, biofertilizer and Control) and 6 repetitions. The evaluated parameters were: dry matter production (DMP), leaf elongation rate (LER), leaf appearance rate (LAR), phyllochron (PHYL), leaf lifespan (LLS), pseudostem elongation rate (SER), final leaf length (FLL), number of live leaves (NLL) and number of tillers (NT). The highest LAR values were observed during summer and spring for the treatment with urea, which also produced the highest LER values. No difference was found in SER among the fertilizer treatments but all fertilized treatments were superior to Control. NT and DMP values were highest (P<0.05) in the treatment with urea, followed by biofertilizer, organic compost and Control. In conclusion, while the use of urea provided greatest forage production, applying biofertilizer gave superior yields to organic compost. Other benefits of organic fertilizers should be assessed as well as combinations of organic and inorganic fertilizers

    Permeability of phospholipid membranes and human red blood cell membranes to hydrogen peroxide

    Get PDF
    Resumen del Conference paper presentado a SfRBM 28th Annual ConferenceHydrogen peroxide (H2O2) is an oxygen-derived oxidant involved in multiple redox processes in the cell, ranging from physiological signaling pathways to oxidative damage reactions when it is found at higher concentrations. In the vascular system, H2O2 is metabolized mainly by red blood cells (RBC) due to their very efficient antioxidant systems and high membrane permeability. However, the information regarding H2O2 transport in the human RBC membrane is limited, as neither the exact value of the permeability coefficient (Pm) nor the permeation mechanisms are known. To explore whether H2O2 permeates through the lipid fraction or protein channels, we studied H2O2 solubility in organic solvents and its permeability in lipid membranes, in order to compare with the RBC membrane. Through measurements of partition constants, we found that H2O2 is 14 and 122000 times less soluble in octanol and hexadecane than in water, anticipating a large thermodynamic barrier to H2O2 permeation by lipid membranes. The Pm in phospholipid membranes of different compositions, determined using the catalase-latency method, varied from 4×10-4 to 5×10-3 cm s-1, at 37°C. On the other hand, in human RBC we determined a Pm of 1.6×10-3 cm s-1. After obtaining these results, we evaluated the potential role of aquaporins as H2O2 transporters by checking the effect of aquaporin inhibitors in H2O2 consumption by RBC, and also by studying H2O2 permeability in RBC devoid of either aquaporin 1 or aquaporin 3. Surprisingly, we could not detect any differences in H2O2 permeability in any case. Altogether, these results provide new information on lipid membrane permeability to H2O2 and a new value for the Pm in human RBC, which was previously unknown. Additionally, they indicate that H2O2 is not transported by aquaporins in human RBC membranes, suggesting simple diffusion or a still unidentified membrane protein as a more probable pathway.ANII: ANII: FMV_1_2019_15559
    corecore