214 research outputs found

    3D Dirac semimetal Cd3As2: A review of material properties

    Full text link
    Cadmium arsenide (Cd3As2) - a time-honored and widely explored material in solid-state physics - has recently attracted considerable attention. This was triggered by a theoretical prediction concerning the presence of 3D symmetry-protected massless Dirac electrons, which could turn Cd3As2 into a 3D analogue of graphene. Subsequent extended experimental studies have provided us with compelling experimental evidence of conical bands in this system, and revealed a number of interesting properties and phenomena. At the same time, some of the material properties remain the subject of vast discussions despite recent intensive experimental and theoretical efforts, which may hinder the progress in understanding and applications of this appealing material. In this review, we focus on the basic material parameters and properties of Cd3As2, in particular those which are directly related to the conical features in the electronic band structure of this material. The outcome of experimental investigations, performed on Cd3As2 using various spectroscopic and transport techniques within the past sixty years, is compared with theoretical studies. These theoretical works gave us not only simplified effective models, but more recently, also the electronic band structure calculated numerically using ab initio methods.Comment: 16 pages, 16 figure

    A micro-magneto-Raman scattering study of graphene on a bulk graphite substrate

    Full text link
    We report on a magneto-Raman scattering study of graphene flakes located on the surface of a bulk graphite substrate. By spatially mapping the Raman scattering response of the surface of bulk graphite with an applied magnetic field, we pinpoint specific locations which show the electronic excitation spectrum of graphene. We present the characteristic Raman scattering signatures of these specific locations. We show that such flakes can be superimposed with another flake and still exhibit a graphene-like excitation spectrum. Two different excitation laser energies (514.5 and 720 nm) are used to investigate the excitation wavelength dependence of the electronic Raman scattering signal.Comment: 6 pages, 5 figure

    Thermal conductivity of graphene in Corbino membrane geometry

    Full text link
    Local laser excitation and temperature readout from the intensity ratio of Stokes to anti-Stokes Raman scattering signals are employed to study the thermal properties of a large graphene membrane. The concluded value of the heat conductivity coefficient \kappa ~ 600 W/m \cdot K is smaller than previously reported but still validates the conclusion that graphene is a very good thermal conductor.Comment: 4 pages, 3 figure

    Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations

    Full text link
    We have studied Bloch electrons in a perfect unidirectional superlattice subject to crossed electric and magnetic fields, where the magnetic field is oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of the electric field are considered. It is shown that the magnetic field suppresses the intersubband tunneling of the Zener type, but does not change the frequency of Bloch oscillations, if the electric field is oriented perpendicularly to both the sample plane and the magnetic field. The electric field applied in-plane (but perpendicularly to the magnetic field) yields the step-like electron energy spectrum, corresponding to the magnetic-field-tunable oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.

    Multiple magneto-phonon resonances in graphene

    Full text link
    Our low-temperature magneto-Raman scattering measurements performed on graphene-like locations on the surface of bulk graphite reveal a new series of magneto-phonon resonances involving both K-point and Gamma-point phonons. In particular, we observe for the first time the resonant splitting of three crossing excitation branches. We give a detailed theoretical analysis of these new resonances. Our results highlight the role of combined excitations and the importance of multi-phonon processes (from both K and Gamma points) for the relaxation of hot carriers in graphene.Comment: 20 pages, 11 figure

    Probing the band structure of quadri-layer graphene with magneto-phonon resonance

    Full text link
    We show how the magneto-phonon resonance, particularly pronounced in sp2 carbon allotropes, can be used as a tool to probe the band structure of multilayer graphene specimens. Even when electronic excitations cannot be directly observed, their coupling to the E2g phonon leads to pronounced oscillations of the phonon feature observed through Raman scattering experiments with multiple periods and amplitudes detemined by the electronic excitation spectrum. Such experiment and analysis have been performed up to 28T on an exfoliated 4-layer graphene specimen deposited on SiO2, and the observed oscillations correspond to the specific AB stacked 4-layer graphene electronic excitation spectrum.Comment: 11 pages, 5 Fi

    Circular dichroism of magneto-phonon resonance in doped graphene

    Full text link
    Polarization resolved, Raman scattering response due to E2g_{2g} phonon in monolayer graphene has been investigated in magnetic fields up to 29 T. The hybridization of the E2g_{2g} phonon with only the fundamental inter Landau level excitation (involving the n=0 Landau level) is observed and only in one of the two configurations of the circularly crossed polarized excitation and scattered light. This polarization anisotropy of the magneto-phonon resonance is shown to be inherent to relatively strongly doped graphene samples, with carrier concentration typical for graphene deposited on SiO2_2

    The hole Fermi surface in Bi2_{2}Se3_{3} probed by quantum oscillations

    Full text link
    Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2_{2}Se3_{3} crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘0^\circ and 90∘90^\circ, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross-sections down to 2424~meV. There is therefore no signature of a camel-back in the valence band of our bulk samples, in accordance with the direct band gap predicted by GWGW calculations.Comment: A supplemental material file giving a more detailed description of our work is available upon reques

    Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure

    Full text link
    In order to characterize magnetic-field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the cyclotron resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with the THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.Comment: 8 pages, 11 figure
    • 

    corecore