1,661 research outputs found
Sigma terms from an SU(3) chiral extrapolation
We report a new analysis of lattice simulation results for octet baryon
masses in 2+1-flavor QCD, with an emphasis on a precise determination of the
strangeness nucleon sigma term. A controlled chiral extrapolation of a recent
PACS-CS Collaboration data set yields baryon masses which exhibit remarkable
agreement both with experimental values at the physical point and with the
results of independent lattice QCD simulations at unphysical meson masses.
Using the Feynman-Hellmann relation, we evaluate sigma commutators for all
octet baryons. The small statistical uncertainty, and considerably smaller
model-dependence, allows a signifcantly more precise determination of the
pion-nucleon sigma commutator and the strangeness sigma term than hitherto
possible, namely {\sigma}{\pi}N=45 \pm 6 MeV and {\sigma}s = 21 \pm 6 MeV at
the physical point.Comment: 4 pages, 4 figure
Search for Higgs Bosons in SUSY Cascade Decays and Neutralino Dark Matter
The Minimal Supersymmetric Extension of the Standard Model (MSSM) is a well
motivated theoretical framework, which contains an extended Higgs sector,
including a light Higgs with Standard Model-like properties in most of the
parameter space. Due to the large QCD background, searches for such a Higgs,
decaying into a pair of bottom quarks, is very challenging at the LHC. It has
been long realized that the situation may be ameliorated by searching for Higgs
bosons in supersymmetric decay chains. Moreover, it has been recently suggested
that the bobber decay channel may be observed in standard production channels
by selecting boosted Higgs bosons, which may be easily identified from the QCD
background. Such boosted Higgs bosons are frequent in the MSSM, since they are
produced from decays of heavy colored supersymmetric particles. Previous works
have emphasized the possibility of observing boosted Higgs bosons in the light
higgsino region. In this work, we study the same question in the regions of
parameter space consistent with a neutralino dark matter relic density,
analyzing its dependence on the non-standard Higgs boson, slepton and squark
masses, as well as on the condition of gaugino mass unification. In general, we
conclude that, provided sleptons are heavier than the second lightest
neutralinos, the presence of boosted Higgs is a common MSSM feature, implying
excellent prospects for observation of the light MSSM Higgs boson in the near
future.Comment: 30 pages, 9 figures. v2: New Xenon 100 results implemented, version
to appear in PR
Demonstration of Robust Quantum Gate Tomography via Randomized Benchmarking
Typical quantum gate tomography protocols struggle with a self-consistency
problem: the gate operation cannot be reconstructed without knowledge of the
initial state and final measurement, but such knowledge cannot be obtained
without well-characterized gates. A recently proposed technique, known as
randomized benchmarking tomography (RBT), sidesteps this self-consistency
problem by designing experiments to be insensitive to preparation and
measurement imperfections. We implement this proposal in a superconducting
qubit system, using a number of experimental improvements including
implementing each of the elements of the Clifford group in single `atomic'
pulses and custom control hardware to enable large overhead protocols. We show
a robust reconstruction of several single-qubit quantum gates, including a
unitary outside the Clifford group. We demonstrate that RBT yields physical
gate reconstructions that are consistent with fidelities obtained by randomized
benchmarking
The intrinsic strangeness and charm of the nucleon using improved staggered fermions
We calculate the intrinsic strangeness of the nucleon, - ,
using the MILC library of improved staggered gauge configurations using the
Asqtad and HISQ actions. Additionally, we present a preliminary calculation of
the intrinsic charm of the nucleon using the HISQ action with dynamical charm.
The calculation is done with a method which incorporates features of both
commonly-used methods, the direct evaluation of the three-point function and
the application of the Feynman- Hellman theorem. We present an improvement on
this method that further reduces the statistical error, and check the result
from this hybrid method against the other two methods and find that they are
consistent. The values for and found here, together with
perturbative results for heavy quarks, show that dark matter scattering through
Higgs-like exchange receives roughly equal contributions from all heavy quark
flavors.Comment: 17 pages, 14 figure
- …