975 research outputs found

    Localization of interacting fermions at high temperature

    Full text link
    We suggest that if a localized phase at nonzero temperature T>0T>0 exists for strongly disordered and weakly interacting electrons, as recently argued, it will also occur when both disorder and interactions are strong and TT is very high. We show that in this high-TT regime the localization transition may be studied numerically through exact diagonalization of small systems. We obtain spectra for one-dimensional lattice models of interacting spinless fermions in a random potential. As expected, the spectral statistics of finite-size samples cross over from those of orthogonal random matrices in the diffusive regime at weak random potential to Poisson statistics in the localized regime at strong randomness. However, these data show deviations from simple one-parameter finite-size scaling: the apparent mobility edge ``drifts'' as the system's size is increased. Based on spectral statistics alone, we have thus been unable to make a strong numerical case for the presence of a many-body localized phase at nonzero TT

    Phenomenology of fully many-body-localized systems

    Full text link
    We consider fully many-body localized systems, i.e. isolated quantum systems where all the many-body eigenstates of the Hamiltonian are localized. We define a sense in which such systems are integrable, with localized conserved operators. These localized operators are interacting pseudospins, and the Hamiltonian is such that unitary time evolution produces dephasing but not "flips" of these pseudospins. As a result, an initial quantum state of a pseudospin can in principle be recovered via (pseudospin) echo procedures. We discuss how the exponentially decaying interactions between pseudospins lead to logarithmic-in-time spreading of entanglement starting from nonentangled initial states. These systems exhibit multiple different length scales that can be defined from exponential functions of distance; we suggest that some of these decay lengths diverge at the phase transition out of the fully many-body localized phase while others remain finite.Comment: 5 pages. Some of this paper has already appeared in: Huse and Oganesyan, arXiv:1305.491

    Many-Body Localization in a Quasiperiodic System

    Get PDF
    Recent theoretical and numerical evidence suggests that localization can survive in disordered many-body systems with very high energy density, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in extended quantum systems far from the zero-temperature limit. It separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting ("ergodic") phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present numerical evidence that many-body localization also occurs in models without disorder but rather a quasiperiodic potential. In one dimension, these systems already have a single-particle localization transition, and we show that this transition becomes a many-body localization transition upon the introduction of interactions. We also comment on possible relevance of our results to experimental studies of many-body dynamics of cold atoms and non-linear light in quasiperiodic potentials.Comment: (12 pages + 3 page appendix, 11 figures) This version has been accepted to PRB. We have clarified certain points and slightly modified the organization of the paper in response to comments by two referee
    corecore