3,427 research outputs found
Comparative study of correlation effects in CaVO3 and SrVO3
We present parameter-free LDA+DMFT (local density approximation + dynamical
mean field theory) results for the many-body spectra of cubic SrVO3 and
orthorhombic CaVO3. Both systems are found to be strongly correlated metals,
but not on the verge of a metal-insulator transition. In spite of the
considerably smaller V-O-V bond angle in CaVO3 the LDA+DMFT spectra of the two
systems for energies E<E_F are very similar, their quasiparticle parts being
almost identical. The calculated spectrum for E>E_F shows more pronounced,
albeit still small, differences. This is in contrast to earlier theoretical and
experimental conclusions, but in good agreement with recent bulk-sensitive
photoemission and x-ray absorption experiments.Comment: 15 pages, 6 figure
Rapid Profiling of Marine Notches Using a Handheld Laser Distance Meter
A rapid, single-user profiling method for rocky shores is described. The Leica Disto D8 handheld laser distance meter
measures distance up to 100 m and inclination in 360 degrees. It automatically calculates horizontal distance and vertical elevation. Memory storage accommodates data for 30 measurement points, allowing easy plotting of shore profiles. This technique allows even inaccessible, dangerous, and overhanging cliff faces to be evaluated faithfully and within minutes. It is a major improvement over standard methods that often involve risky coasteering and climbing. Examples are given from marine notches in Thailand
A self-tuning mechanism in (3+p)d gravity-scalar theory
We present a new type of self-tuning mechanism for ()d brane world
models in the framework of gravity-scalar theory. This new type of self-tuning
mechanism exhibits a remarkable feature. In the limit , being
the string coupling, the geometry of bulk spacetime remains virtually unchanged
by an introduction of the Standard Model(SM)-brane, and consequently it is
virtually unaffected by quantum fluctuations of SM fields with support on the
SM-brane. Such a feature can be obtained by introducing Neveu-Schwarz(NS)-brane
as a background brane on which our SM-brane is to be set. Indeed, field
equations naturally suggest the existence of the background NS-brane. Among the
given such models, of the most interest is the case with , where
represents the bulk cosmological constant. This model contains a pair
of coincident branes (of the SM- and the NS-branes), one of which is a
codimension-2 brane placed at the origin of 2d transverse space (), another a codimension-1 brane placed at the edge of .
These two branes are (anti) T-duals of each other, and one of them may be
identified as our SM-brane plus the background NS-brane. In the presence of the
background NS-brane (and in the absence of ), the 2d transverse space
becomes an orbifold with an appropriate deficit angle.
But this is only possible if the ()d Planck scale and the string
scale () are of the same order, which
accords with the hierarchy assumption \cite{1,2,3} that the electroweak scale
is the only short distance scale existing in nature
On the Conductivity of a Magnetoactive Turbulent Plasma
The problem of determining the effective conductivity tensor of a
magnetoactive turbulent plasma is considered in the approximation of isolated
particles. Additional gyrotropicterms are shown to appear in the conductivity
tensor in the presence of mean, nonzero magnetic helicity. The dispersion of
propagating electro- magnetic waves changes, additional modes and additional
rotation of the polarization plane appear, and the waves can be amplified. The
properties acquired by plasma with helicity are similar those observed in
chiral and bianisotropic electrodynamic media.Comment: 15 page
Inflation Assisted by Heterotic Axions
We explore the possibility of obtaining inflation in weakly coupled heterotic
string theory, where the model dependent axions are responsible for driving
inflation. This model can be considered as a certain extrapolation of
-inflation, and is an attempt to explicitly realize the so
called N-flation proposal in string theory. The instanton generated potential
for the axions essentially has two parameters; a natural mass scale and the
string coupling . For isotropic compactifications leading to of order
axions in the four dimensional spectrum we find that with
the observed temperature fluctuations in the
CMB are correctly reproduced. We assume an initially random distribution for
the vevs of the axions. The spectral index, , is generically more red
than for -inflation. The greater the vevs, the more red the
spectral index becomes. Allowing for a wide range of vevs 55 -foldings from
the end of inflation, we find . The
tensor-to-scalar ratio, , is more sensitive to the vevs, but typically
smaller than in -inflation. Furthermore, in the regime where the
leading order theory is valid, is bounded by . The spectral index
and the tensor-to-scalar ratio are correlated. For example,
corresponds to .Comment: 1+21 pages, 2 figures, v2: Typos corrected, v3: Typos, very minor
corrections, reference added, to appear in JCA
New scaling for the alpha effect in slowly rotating turbulence
Using simulations of slowly rotating stratified turbulence, we show that the
alpha effect responsible for the generation of astrophysical magnetic fields is
proportional to the logarithmic gradient of kinetic energy density rather than
that of momentum, as was previously thought. This result is in agreement with a
new analytic theory developed in this paper for large Reynolds numbers. Thus,
the contribution of density stratification is less important than that of
turbulent velocity. The alpha effect and other turbulent transport coefficients
are determined by means of the test-field method. In addition to forced
turbulence, we also investigate supernova-driven turbulence and stellar
convection. In some cases (intermediate rotation rate for forced turbulence,
convection with intermediate temperature stratification, and supernova-driven
turbulence) we find that the contribution of density stratification might be
even less important than suggested by the analytic theory.Comment: 10 pages, 9 figures, revised version, Astrophys. J., in pres
Correction to:Electro-optic sensor for static fields (vol 125, pg 212, 2019)
The article “Electro-optic sensor for static fields”, written by “J. O. Grasdijk, X. F. Bai, I. Engin, K. Jungmann, H. J. Krause, B. Niederländer, A. Off enhäuser, M. Repetto, L. Willmann, S. Zimmer”, was published incorrectly with Open Access under the terms of the Creative Commons Attribution Noncommercial 4.0 International License. Correct is that the article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The original article has been corrected.</p
The MSSM prediction for W+/- H-/+ production by gluon fusion
We discuss the associated W+/- H-/+ production in p p collision for the Large
Hadron Collider. A complete one-loop calculation of the loop-induced subprocess
g g -> W+/- H-/+ is presented in the framework of the Minimal Supersymmetric
Standard Model (MSSM), and the possible enhancement of the hadronic cross
section is investigated under the constraint from the squark direct-search
results and the low-energy precision data. Because of the large destructive
interplay in the quark-loop contributions between triangle-type and box-type
diagrams, the squark-loop contributions turn out to be comparable with the
quark-loop ones. In particular, the hadronic cross section via gluon fusion can
be extensively enhanced by squark-pair threshold effects in the box-type
diagrams, so that it can be as large as the hadronic cross section via the b
b-bar -> W+/- H-/+ subprocess which appears at tree level.Comment: 35 pages, 7 figures, version to appear in Physical Review
Theory of x-ray absorption by laser-dressed atoms
An ab initio theory is devised for the x-ray photoabsorption cross section of
atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2).
The laser dresses the core-excited atomic states, which introduces a dependence
of the cross section on the angle between the polarization vectors of the two
linearly polarized radiation sources. We use the Hartree-Fock-Slater
approximation to describe the atomic many-particle problem in conjunction with
a nonrelativistic quantum-electrodynamic approach to treat the photon-electron
interaction. The continuum wave functions of ejected electrons are treated with
a complex absorbing potential that is derived from smooth exterior complex
scaling. The solution to the two-color (x-ray plus laser) problem is discussed
in terms of a direct diagonalization of the complex symmetric matrix
representation of the Hamiltonian. Alternative treatments with time-independent
and time-dependent non-Hermitian perturbation theories are presented that
exploit the weak interaction strength between x rays and atoms. We apply the
theory to study the photoabsorption cross section of krypton atoms near the K
edge. A pronounced modification of the cross section is found in the presence
of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe
Seagrass meadows as a globally significant carbonate reservoir
There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha(-1), with an average of 654 +/- 24 Mg PIC ha(-1), exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 +/- 2 Mg PIC ha(-1) per degree of latitude (general linear model, GLM; p \u3c 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 +/- 31.05 g PIC m(-2) yr(-1). Based on the global extent of seagrass meadows (177 000 to 600 000 km(2)), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr(-1), representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrated by the comparison of carbon (PIC and POC) stocks between vegetated and adjacent un-vegetated sediments
- …