1,250 research outputs found

    A role for chromatin remodellers in replication of damaged DNA

    Get PDF
    In eukaryotic cells, replication past damaged sites in DNA is regulated by the ubiquitination of proliferating cell nuclear antigen (PCNA). Little is known about how this process is affected by chromatin structure. There are two isoforms of the Remodels the Structure of Chromatin (RSC) remodelling complex in yeast. We show that deletion of RSC2 results in a dramatic reduction in the level of PCNA ubiquitination after DNA-damaging treatments, whereas no such effect was observed after deletion of RSC1. Similarly, depletion of the BAF180 component of the corresponding PBAF (Polybromo BRG1 (Brahma-Related Gene 1) Associated Factor) complex in human cells led to a similar reduction in PCNA ubiquitination. Remarkably, we found that depletion of BAF180 resulted after UV-irradiation, in a reduction not only of ubiquitinated PCNA but also of chromatin-associated unmodified PCNA and Rad18 (the E3 ligase that ubiquitinates PCNA). This was accompanied by a modest decrease in fork progression. We propose a model to account for these findings that postulates an involvement of PBAF in repriming of replication downstream from replication forks blocked at sites of DNA damage. In support of this model, chromatin immunoprecipitation data show that the RSC complex in yeast is present in the vicinity of the replication forks, and by extrapolation, this is also likely to be the case for the PBAF complex in human cells

    Construction of School Temperature Measurement System with Sensor Network

    Full text link

    Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Get PDF
    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)(2.1 \pm 0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure

    Charge and Spin Transport at the Quantum Hall Edge of Graphene

    Full text link
    Landau level bending near the edge of graphene, described using 2d Dirac equation, provides a microscopic framework for understanding the quantum Hall Effect (QHE) in this material. We review properties of the QHE edge states in graphene, with emphasis on the novel phenomena that arise due to Dirac character of electronic states. A method of mapping out the dispersion of the edge states using scanning tunneling probes is proposed. The Zeeman splitting of Landau levels is shown to create a particularly interesting situation around the Dirac point, where it gives rise to counter-circulating modes with opposite spin. These chiral spin modes lead to a rich variety of spin transport phenomena, including spin Hall effect, spin filtering and injection, and electric detection of spin current. The estimated Zeeman spin gap, enhanced by exchange, of a few hundred Kelvin, makes graphene an attractive system for spintronics. Comparison to recent transport measurements near nu=0 is presented.Comment: 10 pages, 6 figures, invited pape

    Spin-Echo Measurements for an Anomalous Quantum Phase of 2D Helium-3

    Full text link
    Previous heat-capacity measurements of our group had shown the possible existence of an anomalous quantum phase containing the zero-point vacancies (ZPVs) in 2D 3^{3}He. The system is monolayer 3^{3}He adsorbed on graphite preplated with monolayer 4^{4}He at densities (ρ\rho) just below the 4/7 commensurate phase (0.8ρ/ρ4/710.8\leq \rho /\rho_{4/7}\leq 1). We carried out pulsed-NMR measurements in order to examine the microscopic and dynamical nature of this phase. The measured decay of spin echo signals shows the non-exponential behaviour. The decay curve can be fitted with the double exponential function, but the relative intensity of the component with a longer time constant is small (5%) and does not depend on density and temperature, which contradicts the macroscopic fluid and 4/7 phase coexistence model. This slowdown is likely due to the mosaic angle spread of Grafoil substrate and the anisotropic spin-spin relaxation time T2T_{2} in 2D systems with respect to the magnetic field direction. The inverse T2T_2 value deduced from the major echo signal with a shorter time constant, which obeys the single exponential function, decreases linearly with decreasing density from n=1n=1, supporting the ZPV model.Comment: 4 pages, 6 figure

    Boundary States in Graphene Heterojunctions

    Full text link
    A new type of states in graphene-based planar heterojunctions has been studied in the envelope wave function approximation. The condition for the formation of these states is the intersection between the dispersion curves of graphene and its gap modification. This type of states can also occur in smooth graphene-based heterojunctions.Comment: 5 pages, 3 figure
    corecore