521 research outputs found

    Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel

    Get PDF
    A mathematical model is presented to analyze the unsteady peristaltic flow of magnetized viscoelastic fluids through a deformable curved channel. The study simulates the bio-inspired pumping of electro-conductive rheological polymers which possess both electro-conductive and viscoelastic properties. The Jeffrey viscoelastic model is utilized which features both relaxation and retardation terms of relevance to real polymers. A magnetic body force is incorporated for the influence of static radial magnetic field. The mass and momentum conservation equations are formulated in a intrinsic coordinate system and transformed with appropriate variables into a non-dimensional system between the wave and the laboratory frames, under lubrication (i.e. low Reynolds number and long wavelength) approximations. Kinematic and no-slip boundary conditions are imposed at the channel walls. A magnetic body force is incorporated for the influence of static radial magnetic field in the primary momentum equation. An analytical approach is employed to determine closed-form solutions for stream function, axial pressure gradient and volumetric flow rate. Spatio-temporal plots for pressure distribution along the channel (passage) length are presented to study the influence of curvature parameter, relaxation to retardation time ratio (Jeffrey first viscoelastic parameter) and Hartmann number (magnetic field parameter). The effects of these parameters on radial velocity distributions are also visualized. Cases of trapping and reflux in a curved channel are discussed. Streamline distributions are included to study trapping phenomena and to investigate more closely the impact of curvature, magnetic field and viscoelastic properties on bolus evolution. The reflux or retrograde motion of the particles is studied by particle advection based on Lagrangian viewpoint. The simulations provide new insight into the mechanisms of pumping of electro-conductive non-Newtonian liquids in realistic geometries

    The reconfigurable Josephson circulator/directional amplifier

    Full text link
    Circulators and directional amplifiers are crucial non-reciprocal signal routing and processing components involved in microwave readout chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently proposed theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard non-directional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields non-reciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more-complex directional circuits, and has excellent prospects for on-chip integration

    Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Get PDF
    The piriform cortex (PC) is richly innervated by Corticotropin-releasing factor (CRF) and Serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex

    Robust concurrent remote entanglement between two superconducting qubits

    Full text link
    Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics (cQED) platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.010.57\pm0.01 are generated at 200200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.Comment: Main paper: 7 pages, 4 figures; Appendices: 14 pages, 9 figure
    corecore