108 research outputs found
Monte Carlo simulations of the classical two-dimensional discrete frustrated model
The classical two-dimensional discrete frustrated model is studied
by Monte Carlo simulations. The correlation function is obtained for two values
of a parameter that determines the frustration in the model. The ground
state is a ferro-phase for and a commensurate phase with period N=6
for . Mean field predicts that at higher temperature the system enters
a para-phase via an incommensurate state, in both cases. Monte Carlo data for
show two phase transitions with a floating-incommensurate phase
between them. The phase transition at higher temperature is of the
Kosterlitz-Thouless type. Analysis of the data for shows only a
single phase transition between the floating-fluid phase and the ferro-phase
within the numerical error.Comment: 5 figures, submitted to the European Physical Journal
Correlated adatom trimer on metal surface: A continuous time quantum Monte Carlo study
The problem of three interacting Kondo impurities is solved within a
numerically exact continuous time quantum Monte Carlo scheme. A suppression of
the Kondo resonance by interatomic exchange interactions for different cluster
geometries is investigated. It is shown that a drastic difference between the
Heisenberg and Ising cases appears for antiferromagnetically coupled adatoms.
The effects of magnetic frustrations in the adatom trimer are investigated, and
possible connections with available experimental data are discussed.Comment: 4 pages, 4 figure
Continuous Time Quantum Monte Carlo method for fermions
We present numerically exact continuous-time Quantum Monte Carlo algorithm
for fermions with a general non-local in space-time interaction. The new
determinantal grand-canonical scheme is based on a stochastic series expansion
for the partition function in the interaction representation. The method is
particularly applicable for multi-band time-dependent correlations since it
does not invoke the Hubbard-Stratonovich transformation. The test calculations
for exactly solvable models as well results for the Green function and for the
time-dependent susceptibility of the multi-band super-symmetric model with a
spin-flip interaction are discussed.Comment: 10 pages, 7 Figure
Estimation of the fatigue life of steel on the basis of nonlinear model of damage accumulation
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ
Π΄ΠΎΠ»Π³ΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΡΡΠ°Π»ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΡΠ΅Π· ΡΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΌ Π½Π°Π³ΡΡΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ
ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΎΠΉ
ΠΠΎΠ·Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΏΡΠ½ΠΊΡΠΎΠ² Π·Π°Ρ ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ ΠΎΡΡ ΠΎΠ΄ΠΎΠ²
This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia). The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use of public roads during radioactive waste transportation to the disposal facility site.Β Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΠΌΡΡ
Π½Π° ΡΡΠ°ΠΏΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΎΠ· ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠ²Π΅ΡΠ΄ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠ»Π°ΡΡΠΎΠ². Π ΡΠ°ΠΌΠΊΠ°Ρ
Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π²Π°ΡΠΈΠ°Π½Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΏΡΠ½ΠΊΡΠ° Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΡ
ΠΎΠ΄ΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π²ΡΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡ
Π΄ΠΎΠ· ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΏΡΠΈ ΠΏΡΠΈΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΌ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΊΠΎΠΆΠΈΠ²ΡΡΠΈΡ
ΡΡΠ΅Π΄Π½Π΅Π°ΠΊΡΠΈΠ²Π½ΡΡ
, Π½ΠΈΠ·ΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΈ ΠΎΡΠ΅Π½Ρ Π½ΠΈΠ·ΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π²ΠΎ Π€ΡΠ°Π½ΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ ΠΏΡΠΈΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΌ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ Π΄ΠΎΠ»Π³ΠΎΠΆΠΈΠ²ΡΡΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π² Π ΠΎΡΡΠΈΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ΅ΠΊΡΠ½ΡΡ
ΠΎΡΠ΅Π½ΠΎΠΊ Π΄ΠΎΠ· ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ Π΄Π»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΏΡΠΈΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ², ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΊ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ Π² ΠΠ΅Π»ΡΠ³ΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π³Π»ΡΠ±ΠΈΠ½Π½ΠΎΠ³ΠΎ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ Π² ΠΠ΅Π»ΠΈΠΊΠΎΠ±ΡΠΈΡΠ°Π½ΠΈΠΈ ΠΈ ΠΠΈΠΆΠ½Π΅ΠΊΠ°Π½ΡΠΊΠΎΠΌ ΠΌΠ°ΡΡΠΈΠ²Π΅ (Π ΠΎΡΡΠΈΠΉΡΠΊΠ°Ρ Π€Π΅Π΄Π΅ΡΠ°ΡΠΈΡ). Π’Π΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ΄Π°Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π°, Π° Π΄ΠΎΠ·Ρ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΡ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌ ΠΈ Π΄Π»Ρ Π±Π°Π·ΠΎΠ²ΡΡ
ΡΠ΄Π΅ΡΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅: ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΊ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ, ΡΠΎΠΎΡΡΠΆΠ°Π΅ΠΌΡΠ΅ ΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΏΡΠ½ΠΊΡΡ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΡΠ΄Π°Π»ΡΠ΅ΠΌΡΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌ Π² Π ΠΎΡΡΠΈΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΡΠΎΠ³Π»Π°ΡΡΡΡΠΈΠΌΡΡ Ρ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΠΌΠΈ. ΠΡΠ΅Π½Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΠ·Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΡ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π² Π΄ΡΡΠ³ΠΈΡ
ΡΡΡΠ°Π½Π°Ρ
. Π‘ΡΠ΅Π΄Π½ΠΈΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΠ·Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΏΡΠΈ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΡΡΡΡΡ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π½ΠΈΠΆΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π° Π΄ΠΎΠ·Ρ β 20 ΠΌΠΠ²/Π³ΠΎΠ΄. ΠΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π½ΠΈΡΠ°ΡΠ½ΠΎ-Π·Π°ΡΠΈΡΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π° ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ° ΠΏΠΎ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡΡ
ΠΎΠ΄ΠΎΠ², ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠΈΡΠΎΠ²ΠΊΠ΅ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΏΠΎ Π΄ΠΎΡΠΎΠ³Π°ΠΌ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΠΌΠ΅ΡΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ½ΠΊΡΠ° Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ².
Self-Control of Traffic Lights and Vehicle Flows in Urban Road Networks
Based on fluid-dynamic and many-particle (car-following) simulations of
traffic flows in (urban) networks, we study the problem of coordinating
incompatible traffic flows at intersections. Inspired by the observation of
self-organized oscillations of pedestrian flows at bottlenecks [D. Helbing and
P. Moln\'ar, Phys. Eev. E 51 (1995) 4282--4286], we propose a self-organization
approach to traffic light control. The problem can be treated as multi-agent
problem with interactions between vehicles and traffic lights. Specifically,
our approach assumes a priority-based control of traffic lights by the vehicle
flows themselves, taking into account short-sighted anticipation of vehicle
flows and platoons. The considered local interactions lead to emergent
coordination patterns such as ``green waves'' and achieve an efficient,
decentralized traffic light control. While the proposed self-control adapts
flexibly to local flow conditions and often leads to non-cyclical switching
patterns with changing service sequences of different traffic flows, an almost
periodic service may evolve under certain conditions and suggests the existence
of a spontaneous synchronization of traffic lights despite the varying delays
due to variable vehicle queues and travel times. The self-organized traffic
light control is based on an optimization and a stabilization rule, each of
which performs poorly at high utilizations of the road network, while their
proper combination reaches a superior performance. The result is a considerable
reduction not only in the average travel times, but also of their variation.
Similar control approaches could be applied to the coordination of logistic and
production processes
Viral pathogens in urological diseases
Tis review describes diο¬erent virus taxa that are more prevalent in some variants of urological pathology. Te search of articles was conducted in the information portals of Te Cochrane Database, MEDLINE / PubMed Database, eLIBRARY, ClinicalKey for the period 2008-2018. As a result, the most current and representative studies, containing an interpretation of the dynamics of opinions indicating the involvement of viruses in various urological diseases were selected. Te bacterial component is the most studied in the etiology and pathogenesis of inο¬ammatory diseases, but the viral component, as a rule, remains outside the scope of routine examination of patients, which stagnates conducting of adequate therapy and prevention of infectious and inο¬ammatory diseases in urology
- β¦