1,078 research outputs found

    Generalizations of Ripley's K-function with Application to Space Curves

    Full text link
    The intensity function and Ripley's K-function have been used extensively in the literature to describe the first and second moment structure of spatial point sets. This has many applications including describing the statistical structure of synaptic vesicles. Some attempts have been made to extend Ripley's K-function to curve pieces. Such an extension can be used to describe the statistical structure of muscle fibers and brain fiber tracks. In this paper, we take a computational perspective and construct new and very general variants of Ripley's K-function for curves pieces, surface patches etc. We discuss the method from [Chiu, Stoyan, Kendall, & Mecke 2013] and compare it with our generalizations theoretically, and we give examples demonstrating the difference in their ability to separate sets of curve pieces.Comment: 9 pages & 8 figure

    Creation and characterization of vortex clusters in atomic Bose-Einstein condensates

    Full text link
    We show that a moving obstacle, in the form of an elongated paddle, can create vortices that are dispersed, or induce clusters of like-signed vortices in 2D Bose-Einstein condensates. We propose new statistical measures of clustering based on Ripley's K-function which are suitable to the small size and small number of vortices in atomic condensates, which lack the huge number of length scales excited in larger classical and quantum turbulent fluid systems. The evolution and decay of clustering is analyzed using these measures. Experimentally it should prove possible to create such an obstacle by a laser beam and a moving optical mask. The theoretical techniques we present are accessible to experimentalists and extend the current methods available to induce 2D quantum turbulence in Bose-Einstein condensates.Comment: 9 pages, 9 figure

    Simulation of truncated normal variables

    Full text link
    We provide in this paper simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with restricted parameter space for any covariance structure.Comment: This 1992 paper appeared in 1995 in Statistics and Computing and the gist of it is contained in Monte Carlo Statistical Methods (2004), but I receive weekly requests for reprints so here it is

    Topological Homogeneity for Electron Microscopy Images

    Get PDF
    In this paper, the concept of homogeneity is defined, from a topological perspective, in order to analyze how uniform is the material composition in 2D electron microscopy images. Topological multiresolution parameters are taken into account to obtain better results than classical techniques.Ministerio de Economía y Competitividad MTM2016-81030-PMinisterio de Economía y Competitividad TEC2012-37868-C04-0

    Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    Full text link
    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin, Dec. '06

    Markov basis and Groebner basis of Segre-Veronese configuration for testing independence in group-wise selections

    Full text link
    We consider testing independence in group-wise selections with some restrictions on combinations of choices. We present models for frequency data of selections for which it is easy to perform conditional tests by Markov chain Monte Carlo (MCMC) methods. When the restrictions on the combinations can be described in terms of a Segre-Veronese configuration, an explicit form of a Gr\"obner basis consisting of moves of degree two is readily available for performing a Markov chain. We illustrate our setting with the National Center Test for university entrance examinations in Japan. We also apply our method to testing independence hypotheses involving genotypes at more than one locus or haplotypes of alleles on the same chromosome.Comment: 25 pages, 5 figure

    Longitudinal Peer Network Data in Higher Education

    Get PDF
    This chapter employs a longitudinal social network approach to research small group teaching in higher education. Longitudinal social network analyses can provide in-depth understanding of the social dynamics in small groups. Specifically, it is possible to investigate and disentangle the processes by which students make or break social connections with peers and are influenced by them, as well as how those processes relate to group compositions and personal attributes, such as achievement level. With advanced methods for modelling longitudinal social networks, researchers can identify social processes affecting small group teaching and learning

    Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data

    Get PDF
    We present a Bayesian approach to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. By applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs sampler, we demonstrate the potential that MCMC techniques may hold for the computation of posterior distributions of parameters of the binary system that created the gravity radiation signal. We describe the use of the Gibbs sampler method, and present examples whereby signals are detected and analyzed from within noisy data.Comment: 21 pages, 10 figure
    • …
    corecore