41 research outputs found
Interactive flow behaviour and heat transfer enhancement in a microchannel with cross flow synthetic jet
This paper examines the effectiveness in combining a pulsating fluid jet for thermal enhancement in microchannel heat sinks. The proposed arrangement utilises an oscillating diaphragm to induce a high-frequency periodic fluid jet with zero net mass output at the jet orifice hence, termed "synthetic jet". The pulsed jet interacts with the fluid flow through microchannel passages altering their flow characteristics. The present study develops a 2-dimensional finite volume numerical simulation based on unsteady Reynolds-averaged Navier-Stokes equations for examining the microchannel-synthetic jet flow interaction. For a range of parametric conditions, the behaviour of this periodic flow with its special features is identified and the associated convective heat transfer rates are predicted. The results indicate that the pulsating jet leads to outstanding thermal performance in microchannel flow increasing its heat dissipation rate by about 4.3 times compared to a microchannel without jet interaction within the tested parametric range. The degree of thermal enhancement is seen to grow continuously to reach a steady value in the absence of fluid compressibility. The proposed strategy has an intrinsic ability for outstanding thermal characteristics without causing pressure drop increases in microchannel fluid passages, which is identified as a unique feature of the technique.The study also examines and presents the effects of fluid compressibility on the heat removal capacity of this arrangement. The technique is envisaged to have application potential in miniature electronic devices where localised cooling is desired over a base heat dissipation load
Impact of H1N1 on Socially Disadvantaged Populations: Systematic Review
The burden of H1N1 among socially disadvantaged populations is unclear. We aimed to synthesize hospitalization, severe illness, and mortality data associated with pandemic A/H1N1/2009 among socially disadvantaged populations.Studies were identified through searching MEDLINE, EMBASE, scanning reference lists, and contacting experts. Studies reporting hospitalization, severe illness, and mortality attributable to laboratory-confirmed 2009 H1N1 pandemic among socially disadvantaged populations (e.g., ethnic minorities, low-income or lower-middle-income economy countries [LIC/LMIC]) were included. Two independent reviewers conducted screening, data abstraction, and quality appraisal (Newcastle Ottawa Scale). Random effects meta-analysis was conducted using SAS and Review Manager.Sixty-two studies including 44,777 patients were included after screening 787 citations and 164 full-text articles. The prevalence of hospitalization for H1N1 ranged from 17-87% in high-income economy countries (HIC) and 11-45% in LIC/LMIC. Of those hospitalized, the prevalence of intensive care unit (ICU) admission and mortality was 6-76% and 1-25% in HIC; and 30% and 8-15%, in LIC/LMIC, respectively. There were significantly more hospitalizations among ethnic minorities versus non-ethnic minorities in two studies conducted in North America (1,313 patients, OR 2.26 [95% CI: 1.53-3.32]). There were no differences in ICU admissions (n = 8 studies, 15,352 patients, OR 0.84 [0.69-1.02]) or deaths (n = 6 studies, 14,757 patients, OR 0.85 [95% CI: 0.73-1.01]) among hospitalized patients in HIC. Sub-group analysis indicated that the meta-analysis results were not likely affected by confounding. Overall, the prevalence of hospitalization, severe illness, and mortality due to H1N1 was high for ethnic minorities in HIC and individuals from LIC/LMIC. However, our results suggest that there were little differences in the proportion of hospitalization, severe illness, and mortality between ethnic minorities and non-ethnic minorities living in HIC
Red luminescence from ZnO: Cr3+ nanophosphors under visible excitation
ZnO: Cr3+ (1 mol) nanophosphor is synthesized by the wet chemical solution combustion method at the temperature of 400°C. Powder X-ray diffraction results confirmed that Cr3+-doped and undoped ZnO nanophosphors exhibit hexagonal wurtzite structure. The average crystallite size calculated from Scherrer-fs method is 25 nm for undoped and 14 nm for Cr3+-doped ZnO. The UV.visible absorption spectra shows red shift in Cr3+-doped ZnO. Photoluminescence studies of undoped ZnO show violet emission peak at 400 nm and blue emission peak at 447 nm. Cr3+-doped ZnO shows red emission peaks at 642, 694 and 746 nm, which are mainly attributed to spin forbidden transitions of 2Eg 4A2g of Cr3+ ion in ZnO: Cr3+ nanophosphor. Thermoluminescence (TL) studies recorded at a heating rate of 6°C s.1 show two well-resolved glow peaks at 124 and 284°C. It is found that the TL intensity increases with the gamma irradiation dose (500 Gy. 10 kGy). © 2015 Indian Academy of Sciences