30 research outputs found
Self-Organization of a 2D Lattice on a Surface of Ge Single Crystal after Irradiation with Yag: ND Laser
Experimentally observed self-organization of a 2D lattice on the surface of
Ge single crystal after irradiation by pulsed YAG: Nd laser is repoted. The
calculation of time depended distribution of temperature in bulk of the Ge
sample show that overheating of the crystal lattice occurs at laser radiation
intensities exceeding 30MW/cm2.The two temperature gradients are exists.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
MODIFICATION OF BAND-GAP IN SURFACE LAYER OF CDZNTE BY YAG:Nd+3 LASER RADIATION
According to the effect, the interstitial atoms of Cd (Cdi) in Cd1-xZnxTe move along the temperature gradient while the Cd vacancies (VCd) and Zn atoms - in the opposite direction, into the bulk of the semiconductor where temperature is lower. Photoluminescence spectra studied at 5 K show that concentration of Cd atoms increases, but concentration of Zn atoms decreases at the surface due to redistribution atoms in temperature gradient of field. Formation of a graded band gap in Cd1- xZnxTe crystal at irradiation by the second harmonic of Nd:YAG laser is found
Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons
On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity
Π‘ΠΠΠ’ΠΠ Π Π‘Π’Π Π£ΠΠ’Π£Π Π ΠΠΠΠΠ§Π£ΠΠ‘Π’ΠΠΠ’ΠΠΠ¬ΠΠ«Π₯ ΠΠΠΠΠΠΠΠ’ΠΠ«Π₯ ΠΠΠ’ΠΠ ΠΠΠΠΠ TIO2βMoO3
Introduction of molybdenum trioxide to gas sensing materials based on titanium dioxide results in a considerable increase of the output signal in the hydrogen-air environment. It is established that the value of the output signal reaches the maximum at the 1 mol. % MoO3 content in the composite material. Improved gas sensing characteristics of TiO2:MoO3 composite correlate with the structural and phase peculiarities of this system β the inhibition of TiO2 crystallization in the TiO2:MoO3 system, the shift of anatase-rutile phase transition to the higher temperature area in comparison with the temperature of this transition in unloaded TiO2, and with the presence of different types of tetrahonal distortions in MoO6 octahedrons, which ensures the MoO3 lattice high activity in the processes of hydrogen catalytic oxidation, and also with the crystallization of highly dispersed molybdenum oxide with a particle size of 10 nm.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»Π΅Π³ΠΈΡΡΡΡΠΈΡ
Π΄ΠΎΠ±Π°Π²ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½Π° Π² ΡΠΎΡΡΠ°Π² Π³Π°Π·ΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° Π² Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎ-Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Π΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π° ΠΏΡΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ 1 ΠΌΠΎΠ». % ΠΠΎΠ3 Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅. Π£Π»ΡΡΡΠ΅Π½Π½ΡΠ΅ Π³Π°Π·ΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ° TiO2βMoO3 Ρ 1 ΠΌΠΎΠ». % ΠΠΎΠ3 ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ ΡΠΎ ΡΡΡΡΠΊΡΡΡΠ½ΠΎ-ΡΠ°Π·ΠΎΠ²ΡΠΌΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ β ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π° Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ TiO2βMoO3, ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° Π°Π½Π°ΡΠ°Π·βΡΡΡΠΈΠ» Π² ΠΎΠ±Π»Π°ΡΡΡ Π±ΠΎΠ»ΡΡΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° Π΄Π»Ρ Π½Π΅Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π°, Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΡΠ΅ΡΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΠΎΠΊΡΠ°ΡΠ΄ΡΠ°Ρ
ΠΠΎΠ6 ΠΏΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ
Π²ΡΡΠΎΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° ΡΠ΅ΡΠ΅ΡΠΊΠΈ ΠΠΎΠ3 Π² ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π°Π΄ΡΠΎΡΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π²ΡΡΠΎΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½Π° Ρ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΡΠ°ΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° 10 Π½ΠΌ
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΈΠ»ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π½Π° ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΡΠΊΠΈ Π±ΡΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ MDBK
The effect of copper and silver nanoparticles Cu+Ag, silver nitrite AgNO3 and zinc oxide ZnO on morphology and mechanical properties of immunocompetent cells bovine kidney line MDBK is investigated by atomic force microscopy. The results of calculation of the local elastic modulus, strength, surface cell adhesion, adhesion work, and the three-dimensional image analysis of cells in control and after incubation with the nanoparticles bioelements for 20 min are presented.ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΈΠ»ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (ΠΠ‘Π) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΌΠ΅Π΄ΠΈ ΠΈ ΡΠ΅ΡΠ΅Π±ΡΠ° Cu+Ag, Π½ΠΈΡΡΠΈΡΠ° ΡΠ΅ΡΠ΅Π±ΡΠ° AgNO3 ΠΈ ΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΠ½ΠΊΠ° ZnO Π½Π° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈΠΌΠΌΡΠ½ΠΎΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΡΠΊΠΈ Π±ΡΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ MDBK. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ, ΡΠΈΠ»Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ Π°Π΄Π³Π΅Π·ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ, ΡΠ°Π±ΠΎΡΡ Π°Π΄Π³Π΅Π·ΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΠΈ Ρ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ Π±ΠΈΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 20 ΠΌΠΈΠ½