10,068 research outputs found

    Evolution method and "differential hierarchy" of colored knot polynomials

    Full text link
    We consider braids with repeating patterns inside arbitrary knots which provides a multi-parametric family of knots, depending on the "evolution" parameter, which controls the number of repetitions. The dependence of knot (super)polynomials on such evolution parameters is very easy to find. We apply this evolution method to study of the families of knots and links which include the cases with just two parallel and anti-parallel strands in the braid, like the ordinary twist and 2-strand torus knots/links and counter-oriented 2-strand links. When the answers were available before, they are immediately reproduced, and an essentially new example is added of the "double braid", which is a combination of parallel and anti-parallel 2-strand braids. This study helps us to reveal with the full clarity and partly investigate a mysterious hierarchical structure of the colored HOMFLY polynomials, at least, in (anti)symmetric representations, which extends the original observation for the figure-eight knot to many (presumably all) knots. We demonstrate that this structure is typically respected by the t-deformation to the superpolynomials.Comment: 31 page

    Gaussian distribution of LMOV numbers

    Full text link
    Recent advances in knot polynomial calculus allowed us to obtain a huge variety of LMOV integers counting degeneracy of the BPS spectrum of topological theories on the resolved conifold and appearing in the genus expansion of the plethystic logarithm of the Ooguri-Vafa partition functions. Already the very first look at this data reveals that the LMOV numbers are randomly distributed in genus (!) and are very well parameterized by just three parameters depending on the representation, an integer and the knot. We present an accurate formulation and evidence in support of this new puzzling observation about the old puzzling quantities. It probably implies that the BPS states, counted by the LMOV numbers can actually be composites made from some still more elementary objects.Comment: 23 page

    Racah matrices and hidden integrability in evolution of knots

    Get PDF
    We construct a general procedure to extract the exclusive Racah matrices S and \bar S from the inclusive 3-strand mixing matrices by the evolution method and apply it to the first simple representations R =[1], [2], [3] and [2,2]. The matrices S and \bar S relate respectively the maps (R\otimes R)\otimes \bar R\longrightarrow R with R\otimes (R \otimes \bar R) \longrightarrow R and (R\otimes \bar R) \otimes R \longrightarrow R with R\otimes (\bar R \otimes R) \longrightarrow R. They are building blocks for the colored HOMFLY polynomials of arbitrary arborescent (double fat) knots. Remarkably, the calculation realizes an unexpected integrability property underlying the evolution matrices.Comment: 16 page

    Towards matrix model representation of HOMFLY polynomials

    Full text link
    We investigate possibilities of generalizing the TBEM eigenvalue matrix model, which represents the non-normalized colored HOMFLY polynomials for torus knots as averages of the corresponding characters. We look for a model of the same type, which is a usual Chern-Simons mixture of the Gaussian potential, typical for Hermitean models, and the sine Vandermonde factors, typical for the unitary ones. We mostly concentrate on the family of twist knots, which contains a single torus knot, the trefoil. It turns out that for the trefoil the TBEM measure is provided by an action of Laplace exponential on the Jones polynomial. This procedure can be applied to arbitrary knots and provides a TBEM-like integral representation for the N=2 case. However, beyond the torus family, both the measure and its lifting to larger N contain non-trivial corrections in \hbar=\log q. A possibility could be to absorb these corrections into a deformation of the Laplace evolution by higher Casimir and/or cut-and-join operators, in the spirit of Hurwitz tau-function approach to knot theory, but this remains a subject for future investigation.Comment: 10 page
    • …
    corecore