21 research outputs found
Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex
Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66
Antifusion activity in sera from persons infected with human immunodeficiency virus type 1
Cell-to-cell fusion plays an important role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1) infections. An assay to measure the antifusion activity of serum has been developed by using the fusion event that occurs between H9 cells chronically infected with HIV-1 (H9IIIB) and fusion-susceptible MT-2 cells. The endpoint is determined by measuring neutral red uptake in cells after syncytium formation is allowed to occur in the presence of various serum dilutions. The assessment of antifusion activity in serum by neutral red uptake has been shown to correlate with syncytium reduction as determined by direct counting. The optimal number and ratio of cells in the suspension for efficiency and speed of the assay have been determined. With this assay it was shown that 50% of 36 serum specimens capable of neutralizing cell-free virions failed to inhibit syncytium formation. The assay can thus measure a distinct activity in HIV-1-immune human sera which is a subset of neutralization activity. Because of the potential role of this activity in the rate of disease progression and protective immune responses, the antifusion assay will be an important tool for the investigation of disease pathogenesis and for acquired immunodeficiency syndrome vaccine development. The assay can also be applied to the investigation of the pathogenesis of the fusion event at the cellular level. The ability to use absorbance measurements rather than syncytium counts as the endpoint facilitates direct computer-assisted data analysis, which expedites the performance of the assay.</jats:p
Draft Genome Sequence of a Lactobacillus gasseri Strain Isolated from the Catheterized Urine of a Healthy Postmenopausal Woman
Urinary microbiome composition has been found to associate with health status and to change with age.
Lactobacillus gasseri
is one of the most frequently found lactic acid bacteria in the vaginal and urinary tracts of women. Here, we report a draft genome sequence of a urinary
L. gasseri
strain isolated from a healthy postmenopausal woman.
</jats:p
Inhibition of human immunodeficiency virus type 1 replication and cytopathicity by synthetic soluble catecholamine melanins in vitro.
Synthetic soluble melanins were synthesized by spontaneous oxidation of L-dopamine, norepinephrine or 5-hydroxytryptamine (serotonin) in weak alkaline solution. These three melanins inhibited infection of human CD4+ lymphoblastoid cells (MT-2) by cell-free human immunodeficiency virus type 1 (HIV-1), without cell toxicity, at concentrations of 0.15-10 micrograms/ml. Also, syncytium formation and resulting cytopathic effects when uninfected cells were mixed with chronic HIV-1-infected cells were blocked by these melanins. Antisyncytial activity was greater when infected cells were preincubated with melanin than when uninfected cells were preincubated with melanin, thus suggesting that interaction of melanin with viral proteins is an important aspect of the antiviral mechanism. These results make synthetic soluble melanins interesting candidates for further study as possible anti-HIV-1 therapeutics
Antibody-dependent enhancement of simian immunodeficiency virus (SIV) infection in vitro by plasma from SIV-infected rhesus macaques
Plasma from two rhesus macaques (Macaca mulatta) experimentally infected with the simian immunodeficiency virus (SIV; isolate SIVmac251) enhanced SIVmac infection of a human CD4+ lymphoblastoid cell line, MT-2. Prechallenge plasma samples from these animals and serum from SIV-negative macaques did not enhance infection. Compared with controls, infection enhancement was characterized by the rapid appearance of syncytium formation (3 to 4 days sooner), reverse transcriptase release (10-fold increase), and cytopathic effect (60% cell killing). Enhancement of activity was dependent on the presence of diluted, fresh SIV-negative macaque serum as a source of complement. A requirement for complement was shown by the absence of enhancement in heat-inactivated serum and by dose-dependent inhibition of enhancement in the presence of polyclonal antibody to monkey complement component C3. Monoclonal antibody to CD4 (OKT4a) blocked enhancement completely, while monoclonal antibody to the human complement component C3d receptor CR2 (OKB7) reduced enhancement by greater than 50%, indicating a requirement for CD4 and CR2 in mediating this phenomenon. SIV infection-enhancing activity appeared in macaques soon after experimental inoculation (28 days). The titer increased over time and peaked just prior to the death of both macaques from opportunistic infections and lymphoma. In vitro SIV infection enhancement is nearly identical to the in vitro complement-mediated, antibody-dependent enhancing (C'-ADE) activity observed in human immunodeficiency virus-positive human sera (Robinson et al., Lancet i:790-794, 1988; Robinson et al., J. Acq. Immun. Def. Synd. 2:33-42, 1989). These observations validate the macaque-SIV model for studies of C'-ADE.</jats:p
Phosphorothioate and cordycepin analogues of 2',5'-oligoadenylate: inhibition of human immunodeficiency virus type 1 reverse transcriptase and infection in vitro.
The strength and genetic basis of reproductive isolating barriers in flowering plants
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving 19 pairs of plant taxa, we assessed the strength and patterns of asymmetry of multiple prezygotic and postzygotic reproductive isolating barriers. We then reviewed contemporary knowledge of the genetic architecture of reproductive isolation and the relative role of chromosomal and genic factors in intrinsic postzygotic isolation. On average, we found that prezygotic isolation is approximately twice as strong as postzygotic isolation, and that postmating barriers are approximately three times more asymmetrical in their action than premating barriers. Barriers involve a variable number of loci, and chromosomal rearrangements may have a limited direct role in reproductive isolation in plants. Future research should aim to understand the relationship between particular genetic loci and the magnitude of their effect on reproductive isolation in nature, the geographical scale at which plant speciation occurs, and the role of different evolutionary forces in the speciation process
