528 research outputs found

    Reversors and Symmetries for Polynomial Automorphisms of the Plane

    Get PDF
    We obtain normal forms for symmetric and for reversible polynomial automorphisms (polynomial maps that have polynomial inverses) of the plane. Our normal forms are based on the generalized \Henon normal form of Friedland and Milnor. We restrict to the case that the symmetries and reversors are also polynomial automorphisms. We show that each such reversor has finite-order, and that for nontrivial, real maps, the reversor has order 2 or 4. The normal forms are shown to be unique up to finitely many choices. We investigate some of the dynamical consequences of reversibility, especially for the case that the reversor is not an involution.Comment: laTeX with 5 figures. Added new sections dealing with symmetries and an extensive discussion of the reversing symmetry group

    Characterizing and modeling the dynamics of online popularity

    Full text link
    Online popularity has enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems, the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and inter-event time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.Comment: 5 pages, 4 figures. Modeling part detailed. Final version published in Physical Review Letter

    Transport in Transitory Dynamical Systems

    Full text link
    We introduce the concept of a "transitory" dynamical system---one whose time-dependence is confined to a compact interval---and show how to quantify transport between two-dimensional Lagrangian coherent structures for the Hamiltonian case. This requires knowing only the "action" of relevant heteroclinic orbits at the intersection of invariant manifolds of "forward" and "backward" hyperbolic orbits. These manifolds can be easily computed by leveraging the autonomous nature of the vector fields on either side of the time-dependent transition. As illustrative examples we consider a two-dimensional fluid flow in a rotating double-gyre configuration and a simple one-and-a-half degree of freedom model of a resonant particle accelerator. We compare our results to those obtained using finite-time Lyapunov exponents and to adiabatic theory, discussing the benefits and limitations of each method.Comment: Updated and corrected version. LaTeX, 29 pages, 21 figure

    Transport in Transitory, Three-Dimensional, Liouville Flows

    Full text link
    We derive an action-flux formula to compute the volumes of lobes quantifying transport between past- and future-invariant Lagrangian coherent structures of n-dimensional, transitory, globally Liouville flows. A transitory system is one that is nonautonomous only on a compact time interval. This method requires relatively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying only on the generalized actions of loops on the lobe boundaries. These are easily computed since the vector fields are autonomous before and after the time-dependent transition. Two examples in three-dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through a microfluidic channel mixer. In both cases the action-flux computations of transport are compared to those obtained using Monte Carlo methods.Comment: 30 pages, 16 figures, 1 table, submitted to SIAM J. Appl. Dyn. Sy

    Chaos in a well : Effects of competing length scales

    Full text link
    A discontinuous generalization of the standard map, which arises naturally as the dynamics of a periodically kicked particle in a one dimensional infinite square well potential, is examined. Existence of competing length scales, namely the width of the well and the wavelength of the external field, introduce novel dynamical behaviour. Deterministic chaos induced diffusion is observed for weak field strengths as the length scales do not match. This is related to an abrupt breakdown of rotationally invariant curves and in particular KAM tori. An approximate stability theory is derived wherein the usual standard map is a point of ``bifurcation''.Comment: 15 pages, 5 figure

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τ(1/)1/μ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent μ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τln(1/)\tau_{\hbar} \sim \ln(1/\hbar) with respect to \hbar

    New Class of Eigenstates in Generic Hamiltonian Systems

    Full text link
    In mixed systems, besides regular and chaotic states, there are states supported by the chaotic region mainly living in the vicinity of the hierarchy of regular islands. We show that the fraction of these hierarchical states scales as α\hbar^{-\alpha} and relate the exponent α=11/γ\alpha=1-1/\gamma to the decay of the classical staying probability P(t)tγP(t)\sim t^{-\gamma}. This is numerically confirmed for the kicked rotor by studying the influence of hierarchical states on eigenfunction and level statistics.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea

    Quantum Poincar\'e Recurrences

    Full text link
    We show that quantum effects modify the decay rate of Poincar\'e recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the universal value p=1 due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.Comment: revtex, 4 pages, 4 figure
    corecore