2,075 research outputs found

    Explicit Evaluations of Matrix-variate Gamma and Beta Integrals in the Real and Complex Cases

    Full text link
    Matrix transformations in terms of triangular matrices is the easiest method of evaluating matrix-variate gamma and beta integrals in the real and complex cases. Here we give several procedures of explicit evaluation of gamma and beta integrals in the general real and complex situations. The procedure also reveals the structure of these matrix-variate integrals. Apart from the evaluation of matrix-variate gamma and beta integrals, the procedure can also be applied to evaluate such integrals explicitly in similar situations. Various methods described here will be useful to those who are working on integrals involving real-valued scalar functions of matrix argument in general and gamma and beta integrals in particular.Comment: 17 pages, LaTe

    Quantum Hall Effect and Noncommutative Geometry

    Full text link
    We study magnetic Schrodinger operators with random or almost periodic electric potentials on the hyperbolic plane, motivated by the quantum Hall effect in which the hyperbolic geometry provides an effective Hamiltonian. In addition we add some refinements to earlier results. We derive an analogue of the Connes-Kubo formula for the Hall conductance via the quantum adiabatic theorem, identifying it as a geometric invariant associated to an algebra of observables that turns out to be a crossed product algebra. We modify the Fredholm modules defined in [CHMM] in order to prove the integrality of the Hall conductance in this case.Comment: 18 pages, paper rewritte

    Quantum Hall Effect on the Hyperbolic Plane in the presence of disorder

    Full text link
    We study both the continuous model and the discrete model of the integer quantum Hall effect on the hyperbolic plane in the presence of disorder, extending the results of an earlier paper [CHMM]. Here we model impurities, that is we consider the effect of a random or almost periodic potential as opposed to just periodic potentials. The Hall conductance is identified as a geometric invariant associated to an algebra of observables, which has plateaus at gaps in extended states of the Hamiltonian. We use the Fredholm modules defined in [CHMM] to prove the integrality of the Hall conductance in this case. We also prove that there are always only a finite number of gaps in extended states of any random discrete Hamiltonian. [CHMM] A. Carey, K. Hannabuss, V. Mathai and P. McCann, Quantum Hall Effect on the Hyperbolic Plane, Communications in Mathematical Physics, 190 vol. 3, (1998) 629-673.Comment: LaTeX2e, 17 page
    corecore