23,518 research outputs found

    Studies of hadronic B decays to final states containing open charm mesons at LHCb

    No full text
    International audienceThe LHCb experiment is a general purpose forward spectrometer operating at the Large Hadron Collider, optimized for the study of B and D hadrons. LHCb collected 1.0 fb-1 of integrated luminosity during 2011 data taking, collecting unprecedented large samples of B hadron decays to final states involving charmed hadrons. These decays offer many complementary measurements of CP violation and CKM matrix parameters, and serve as a laboratory for testing effective theories of hadron decays. We present a selection of new world leading results in these types of decays, including first observations of new decay modes, world best branching ratio measurements and studies of resonant structure

    Nanowires: A route to efficient thermoelectric devices

    Full text link
    Miniaturization of electronic devices aims at manufacturing ever smaller products, from mesoscopic to nanoscopic sizes. This trend is challenging because the increased levels of dissipated power demands a better understanding of heat transport in small volumes. A significant amount of the consumed energy is transformed into heat and dissipated to the environment. Thermoelectric materials offer the possibility to harness dissipated energy and make devices less energy-demanding. Heat-to-electricity conversion requires materials with a strongly suppressed thermal conductivity but still high electronic conduction. Nanowires can meet nicely these two requirements because enhanced phonon scattering at the surface and defects reduces the lattice thermal conductivity while electric conductivity is not deteriorated, leading to an overall remarkable thermoelectric efficiency. Therefore, nanowires are regarded as a promising route to achieving valuable thermoelectric materials at the nanoscale. In this paper, we present an overview of key experimental and theoretical results concerning the thermoelectric properties of nanowires. The focus of this review is put on the physical mechanisms by which the efficiency of nanowires can be improved. Phonon scattering at surfaces and interfaces, enhancement of the power factor by quantum effects and topological protection of electron states to prevent the degradation of electrical conductivity in nanowires are thoroughly discussed

    A pilot search for mm-wavelength recombination lines from emerging ionized winds in pre-planetary nebulae candidates

    Full text link
    We report the results from a pilot search for radio recombination line (RRL) emission at millimeter wavelengths in a small sample of pre-planetary nebulae (pPNe) and young PNe (yPNe) with emerging central ionized regions. Observations of the H30\alpha, H31a, H39a, H41a, H48b, H49b, H51b, and H55g lines at 1 and 3mm have been performed with the IRAM 30 m radio telescope. These lines are excellent probes of the dense inner (<~150 au) and heavily obscured regions of these objects, where the yet unknown agents for PN-shaping originate. We detected mm-RRLs in three objects: CRL 618, MWC 922, and M 2-9. For CRL 618, the only pPN with previous published detections of H41a, H35a, and H30a emission, we find significant changes in the line profiles indicating that current observations are probing regions of the ionized wind with larger expansion velocities and mass-loss rate than ~29 years ago. In the case of MWC 922, we observe a drastic transition from single-peaked profiles at 3mm to double-peaked profiles at 1mm, which is consistent with maser amplification of the highest frequency lines; the observed line profiles are compatible with rotation and expansion of the ionized gas, probably arranged in a disk+wind system around a ~5-10 Msun central mass. In M 2-9, the mm-RRL emission appears to be tracing a recent mass outburst by one of the stars of the central binary system. We present the results from non-LTE line and continuum radiative transfer models, which enables us to constrain the structure, kinematics, and physical conditions (electron temperature and density) of the ionized cores of our sample. (abridged). We deduce mass-loss rates of ~1e-6-1e-7 Msun/yr, which are significantly higher than the values adopted by stellar evolution models currently in use and would result in a transition from the asymptotic giant branch to the PN phase faster than hitherto assumed.Comment: Accepted by Astronomy and Astrophysics. 28 pages, including figure

    The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries

    Get PDF
    We explore diffuse formulations of Nitsche's method for consistently imposing Dirichlet boundary conditions on phase-field approximations of sharp domains. Leveraging the properties of the phase-field gradient, we derive the variational formulation of the diffuse Nitsche method by transferring all integrals associated with the Dirichlet boundary from a geometrically sharp surface format in the standard Nitsche method to a geometrically diffuse volumetric format. We also derive conditions for the stability of the discrete system and formulate a diffuse local eigenvalue problem, from which the stabilization parameter can be estimated automatically in each element. We advertise metastable phase-field solutions of the Allen-Cahn problem for transferring complex imaging data into diffuse geometric models. In particular, we discuss the use of mixed meshes, that is, an adaptively refined mesh for the phase-field in the diffuse boundary region and a uniform mesh for the representation of the physics-based solution fields. We illustrate accuracy and convergence properties of the diffuse Nitsche method and demonstrate its advantages over diffuse penalty-type methods. In the context of imaging based analysis, we show that the diffuse Nitsche method achieves the same accuracy as the standard Nitsche method with sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human vertebral body

    Interplay between the magnetic anisotropy contributions of Cobalt nanowires

    Get PDF
    We report on the magnetic properties and the crystallographic structure of the cobalt nanowire arrays as a function of their nanoscale dimensions. X-ray diffraction measurements show the appearance of an in-plane HCP-Co phase for nanowires with 50 nm diameter, suggesting a partial reorientation of the magnetocrystalline anisotropy axis along the membrane plane with increasing pore diameter. No significant changes in the magnetic behavior of the nanowire system are observed with decreasing temperature, indicating that the effective magnetoelastic anisotropy does not play a dominant role in the remagnetization processes of individual nanowires. An enhancement of the total magnetic anisotropy is found at room temperature with a decreasing nanowire diameter-to-length ratio (d/L), a result that is quantitatively analyzed on the basis of a simplified shape anisotropy model.Comment: 8 pages, 4 figure

    VIMOS-VLT spectroscopy of the giant Ly-alpha nebulae associated with three z~2.5 radio galaxies

    Full text link
    The morphological and spectroscopic properties of the giant (>60 kpc) Ly-alpha nebulae associated with three radio galaxies at z~2.5 (MRC 1558-003, MRC 2025-218 and MRC 0140-257) have been investigated using integral field spectroscopic data obtained with VIMOS on VLT. The morphologies are varied. The nebula of one source has a centrally peaked, rounded appearance. In the other two objects, it consists of two spatial components. The three nebulae are aligned with the radio axis within <30 deg. The total Ly-alpha luminosities are in the range (0.3-3.4) x 1e44 erg s-1. The Ly-alpha spectral profile shows strong variation through the nebulae, with FWHM values in the range ~400-1500 km s-1 and velocity shifts V~120-600 km s-1. We present an infall model which can explain successfully most Ly-alpha morphological and spectroscopic properties of the nebula associated with MRC 1558-003. This adds further support to our previous conclusion that the _quiescent_ giant nebulae associated with this and other high redshift powerful radio galaxies are in infall. A problem for this model is the difficulty to reproduce the large Ly-alpha FWHM values. We have discovered a giant (~85 kpc) Ly-alpha nebula associated with the radio galaxy MRC 0140-257 at z=2.64. It shows strikingly relaxed kinematics (FWHM2) radio galaxies.Comment: 14 pages, 13 figures. Accepted for publication in MNRA

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table
    corecore