1 research outputs found
Irreducible triangulations of surfaces with boundary
A triangulation of a surface is irreducible if no edge can be contracted to
produce a triangulation of the same surface. In this paper, we investigate
irreducible triangulations of surfaces with boundary. We prove that the number
of vertices of an irreducible triangulation of a (possibly non-orientable)
surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was
known only for surfaces without boundary (b=0). While our technique yields a
worse constant in the O(.) notation, the present proof is elementary, and
simpler than the previous ones in the case of surfaces without boundary