69 research outputs found

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    Get PDF
    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability

    What is the spatial distribution of magnetic helicity injected in a solar active region?

    Get PDF
    Copyright © 2006 EDP Sciences. This article appeared in Astronomy & Astrophysics 452 (2006) and may be found at http://www.aanda.org/index.php?option=article&access=doi&doi=10.1051/0004-6361:20054643Context. Magnetic helicity is suspected to play a key role in solar phenomena such as flares and coronal mass ejections. Several investigations have recently computed the photospheric flux of magnetic helicity in active regions. The derived spatial maps of the helicity flux density, called GA, have an intrinsic mixed-sign patchy distribution. Aims. Pariat et al. (2005) recently showed that GA is only a proxy of the helicity flux density, which tends to create spurious polarities. They proposed a better proxy, Gθ. We investigate here the implications of this new approach on observed active regions. Methods. The magnetic data are from MDI/SoHO instrument and the photospheric velocities are computed by local correlation tracking. Maps and temporal evolution of GA and Gθ are compared using the same data set for 5 active regions. Results. Unlike the usual GA maps, most of our Gθ maps show almost unipolar spatial structures because the nondominant helicity flux densities are significantly suppressed. In a few cases, the Gθ maps still contain spurious bipolar signals. With further modelling we infer that the real helicity flux density is again unipolar. On time-scales larger than their transient temporal variations, the time evolution of the total helicity fluxes derived from GA and Gθ show small differences. However, unlike GA, with Gθ the time evolution of the total flux is determined primarily by the predominant-signed flux while the nondominant-signed flux is roughly stable and probably mostly due to noise. Conclusions. Our results strongly support the conclusion that the spatial distribution of helicity injected into active regions is much more coherent than previously thought: on the active region scale the sign of the injected helicity is predominantly uniform. These results have implications for the generation of the magnetic field (dynamo) and for the physics of both flares and coronal mass ejections

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions

    Factor Supplies and Specialization in the World Economy

    Full text link
    A core prediction of the Heckscher-Ohlin theory is that countries specialize in goods in which they have a comparative advantage, and that the source of comparative advantage is differences in relative factor supplies. To examine this theory, we use the most extensive data set available and document the pattern of industrial specialization and factor endowment differences in a broad sample of rich and developing countries over a lengthy period (1970-92). Next, we develop an empirical model of specialization based on factor endowments, allowing for unmeasurable technological differences, and estimate it using panel data techniques. In addition to estimating the effects of factor endowments, we consider the alternative hypothesis that the level of aggregate productivity by itself can explain specialization. Our results clearly show the importance of factor endowments on specialization: relative endowments do matter

    Development of an atmospheric Cherenkov imaging camera for the CANGAROO-III experiment

    Get PDF
    A Cherenkov imaging camera for the CANGAROO-III experiment has been developed for observations of gamma-ray induced air-showers at energies from 1011^{11} to 1014^{14} eV. The camera consists of 427 pixels, arranged in a hexagonal shape at 0.17^\circ intervals, each of which is a 3/4-inch diameter photomultiplier module with a Winston-cone--shaped light guide. The camera was designed to have a large dynamic range of signal linearity, a wider field of view, and an improvement in photon collection efficiency compared with the CANGAROO-II camera. The camera, and a number of the calibration experiments made to test its performance, are described in detail in this paper.Comment: 25 pages, 29 figures, elsart.cls, to appear in NIM-
    corecore