21,884 research outputs found
Melting Crystal, Quantum Torus and Toda Hierarchy
Searching for the integrable structures of supersymmetric gauge theories and
topological strings, we study melting crystal, which is known as random plane
partition, from the viewpoint of integrable systems. We show that a series of
partition functions of melting crystals gives rise to a tau function of the
one-dimensional Toda hierarchy, where the models are defined by adding suitable
potentials, endowed with a series of coupling constants, to the standard
statistical weight. These potentials can be converted to a commutative
sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable
connection between random plane partition and quantum torus Lie algebra, and
substantially enables to prove the statement. Based on the result, we briefly
argue the integrable structures of five-dimensional
supersymmetric gauge theories and -model topological strings. The
aforementioned potentials correspond to gauge theory observables analogous to
the Wilson loops, and thereby the partition functions are translated in the
gauge theory to generating functions of their correlators. In topological
strings, we particularly comment on a possibility of topology change caused by
condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section
is added and devoted to Conclusion and discussion, where, in particular, a
possible relation with the generating function of the absolute Gromov-Witten
invariants on CP^1 is commented. Two references are added. Typos are
corrected. 32 pages. 4 figure
Subaru and Keck Observations of the Peculiar Type Ia Supernova 2006gz at Late Phases
Recently, a few peculiar Type Ia supernovae (SNe) that show exceptionally
large peak luminosity have been discovered. Their luminosity requires more than
1 Msun of 56Ni ejected during the explosion, suggesting that they might have
originated from super-Chandrasekhar mass white dwarfs. However, the nature of
these objects is not yet well understood. In particular, no data have been
taken at late phases, about one year after the explosion. We report on Subaru
and Keck optical spectroscopic and photometric observations of the SN Ia
2006gz, which had been classified as being one of these "overluminous" SNe Ia.
The late-time behavior is distinctly different from that of normal SNe Ia,
reinforcing the argument that SN 2006gz belongs to a different subclass than
normal SNe Ia. However, the peculiar features found at late times are not
readily connected to a large amount of 56Ni; the SN is faint, and it lacks [Fe
II] and [Fe III] emission. If the bulk of the radioactive energy escapes the SN
ejecta as visual light, as is the case in normal SNe Ia, the mass of 56Ni does
not exceed ~ 0.3 Msun. We discuss several possibilities to remedy the problem.
With the limited observations, however, we are unable to conclusively identify
which process is responsible. An interesting possibility is that the bulk of
the emission might be shifted to longer wavelengths, unlike the case in other
SNe Ia, which might be related to dense C-rich regions as indicated by the
early-phase data. Alternatively, it might be the case that SN 2006gz, though
peculiar, was actually not substantially overluminous at early times.Comment: 8 pages, 6 figures, 4 tables. Accepted for publication in The
Astrophysical Journa
Optical Emission from Aspherical Supernovae and the Hypernova SN 1998bw
A fully 3D Monte Carlo scheme is applied to compute optical bolometric light
curves for aspherical (jet-like) supernova explosion models. Density and
abundance distributions are taken from hydrodynamic explosion models, with the
energy varied as a parameter to explore the dependence. Our models show
initially a very large degree ( depending on model parameters) of
boosting luminosity toward the polar () direction relative to the equatorial
() plane, which decreases as the time of peak is approached. After the peak,
the factor of the luminosity boost remains almost constant () until
the supernova enters the nebular phase. This behavior is due mostly to the
aspherical Ni distribution in the earlier phase and to the disk-like
inner low-velocity structure in the later phase. Also the aspherical models
yield an earlier peak date than the spherical models, especially if viewed from
near the z-axis. Aspherical models with ejecta mass \sim 10\Msun are
examined, and one with the kinetic energy of the expansion ergs and a mass of Ni \sim 0.4\Msun yields a light
curve in agreement with the observed light curve of SN 1998bw (the prototypical
hyper-energetic supernova). The aspherical model is also at least qualitatively
consistent with evolution of photospheric velocities, showing large velocities
near the z-axis, and with a late-phase nebular spectrum. The viewing angle is
close to the z-axis, strengthening the case for the association of SN 1998bw
with the gamma ray burst GRB980425.Comment: Accepted by the Astrophysical Journal. 28 pages, 14 figure
Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity
Properties of -dimensional static wormhole solutions are
investigated in Einstein-Gauss-Bonnet gravity with or without a cosmological
constant . We assume that the spacetime has symmetries corresponding
to the isometries of an -dimensional maximally symmetric space with the
sectional curvature . It is also assumed that the metric is at
least and the -dimensional maximally symmetric subspace is
compact. Depending on the existence or absence of the general relativistic
limit , solutions are classified into general relativistic (GR)
and non-GR branches, respectively, where is the Gauss-Bonnet coupling
constant. We show that a wormhole throat respecting the dominant energy
condition coincides with a branch surface in the GR branch, otherwise the null
energy condition is violated there. In the non-GR branch, it is shown that
there is no wormhole solution for . For the matter field with
zero tangential pressure, it is also shown in the non-GR branch with
and that the dominant energy condition holds at the
wormhole throat if the radius of the throat satisfies some inequality. In the
vacuum case, a fine-tuning of the coupling constants is shown to be necessary
and the radius of a wormhole throat is fixed. Explicit wormhole solutions
respecting the energy conditions in the whole spacetime are obtained in the
vacuum and dust cases with and .Comment: 10 pages, 2 tables; v2, typos corrected, references added; v3,
interpretation of the solution for n=5 in section IV corrected; v4, a very
final version to appear in Physical Review
Creation of the universe with a stealth scalar field
The stealth scalar field is a non-trivial configuration without any
back-reaction to geometry, which is characteristic for non-minimally coupled
scalar fields. Studying the creation probability of the de Sitter universe with
a stealth scalar field by the Hartle and Hawking's semi-classical method, we
show that the effect of the stealth field can be significant. For the class of
scalar fields we consider, creation with a stealth field is possible for a
discrete value of the coupling constant and its creation probability is always
less than that with a trivial scalar field. However, those creation rates can
be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe
adde
Discrete derivatives and symmetries of difference equations
We show on the example of the discrete heat equation that for any given
discrete derivative we can construct a nontrivial Leibniz rule suitable to find
the symmetries of discrete equations. In this way we obtain a symmetry Lie
algebra, defined in terms of shift operators, isomorphic to that of the
continuous heat equation.Comment: submitted to J.Phys. A 10 Latex page
Ginsparg-Wilson Dirac operator in the monopole backgrounds on the fuzzy 2-sphere
In the previous papers, we studied the 't Hooft-Polyakov (TP) monopole
configurations in the U(2) gauge theory on the fuzzy 2-sphere,and showed that
they have nonzero topological charge in the formalism based on the
Ginsparg-Wilson (GW) relation. In this paper, we will show an index theorem in
the TP monopole background, which is defined in the projected space, and
provide a meaning of the projection operator. We also extend the index theorem
to general configurations which do not satisfy the equation of motion, and show
that the configuration space can be classified into the topological sectors. We
further calculate the spectrum of the GW Dirac operator in the TP monopole
backgrounds, and consider the index theorem in these cases.Comment: Latex2e, 37 pages, 3 figure
Absence of non-linear Meissner effect in YBa2Cu3O6.95
We present measurements the field and temperature dependence of the
penetration depth (lambda) in high purity, untwinned single crystals of
YBa2Cu3O6.95 in all three crystallographic directions. The temperature
dependence of lambda is linear down to low temperatures, showing that our
crystals are extremely clean. Both the magnitude and temperature dependence of
the field dependent correction to lambda however, are considerably different
from that predicted from the theory of the non-linear Meissner effect for a
d-wave superconductor (Yip-Sauls theory). Our results suggest that the
Yip-Sauls effect is either absent or is unobservably small in the Meissner
state of YBa2Cu3O6.95.Comment: 4 pages, 4 figures (Latex file + Postscipt figures
- …