390 research outputs found
Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices
Radiation hardness is an important requirement for solid state readout
devices operating in high radiation environments common in particle physics
experiments. The MEGII experiment, at PSI, Switzerland, investigates the
forbidden decay . Exploiting the most intense
muon beam of the world. A significant flux of non-thermal neutrons (kinetic
energy ) is present in the experimental hall produced along
the beamline and in the hall itself. We present the effects of neutron fluxes
comparable to the MEGII expected doses on several Silicon PhotoMulitpliers
(SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEGII
experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and
Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical
Multiplication complex (SM1) moderated with water, located at the University of
Pavia (Italy). We report the change of SiPMs most important electric
parameters: dark current, dark pulse frequency, gain, direct bias resistance,
as a function of the integrated neutron fluency.Comment: 9 pages, 6 figures. Proceedings from Instrumentation for colliding
Beam Physics (INSTR-17) 27-02-2017/03-03-2017 Novosibirsk (R
WARP: a WIMP double phase Argon detector
The WARP programme for dark matter search with a double phase argon detector
is presented. In such a detector both excitation and ionization produced by an
impinging particle are evaluated by the contemporary measurement of primary
scintillation and secondary (proportional) light signal, this latter being
produced by extracting and accelerating ionization electrons in the gas phase.
The proposed technique, verified on a 2.3 liters prototype, could be used to
efficiently discriminate nuclear recoils, induced by WIMP's interactions, and
measure their energy spectrum. An overview of the 2.3 liters results and of the
proposed 100 liters detector is shown.Comment: Proceeding for IDM200
The laser calibration system of the HARP TOF
Abstract The calibration and monitoring system constructed for the HARP experiment scintillator-based time of flight system is described. It is based on a Nd-Yag laser with passive Q-switch and active/passive mode-locking, with a custom made laser light injection system based on a bundle of IR monomode optical fibers. A novel ultrafast InGaAs MSM photodiode, with 30 ps risetime, has been used for the laser pulse timing . The first results from the 2001–2002 data taking are presented, showing that drifts in timing down to about 70 ps can be traced
Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged
particle imaging capability with remarkable spatial resolution. Precise event
reconstruction procedures are critical in order to fully exploit the potential
of this technology. In this paper we present a new, general approach of
three-dimensional reconstruction for the LAr TPC with a practical application
to track reconstruction. The efficiency of the method is evaluated on a sample
of simulated tracks. We present also the application of the method to the
analysis of real data tracks collected during the ICARUS T600 detector
operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic
- …