1,420 research outputs found
Tackling Prejudice and Discrimination Towards Families with Same-Sex Parents: An Exploratory Study in Italy
Though studies have shown that the sexual orientation of parents does not influence their parenting skills or the well-being of their children, prejudice against same-sex families is still very widespread. Research has not sufficiently explored the ways in which parents tackle this prejudice. Using qualitative methodologies, in particular textual analyses, this study has analysed the discourse used by same-sex families to handle the prejudices that they face. The results highlighted that conflicts, which may even be ideological in nature, are sometimes created between traditional families and “atypical” families. These often result in estrangement and isolation from their own family and the communities to which they belong, in turn damaging the growth of the children involved. Furthermore, means for moving beyond conflict, sharing experiences and effectively tackling prejudices are also discussed
A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole
Consider, in the domain of outer communication of a Kerr-Newman black hole, a
point (observation event) and a timelike curve (worldline of light source).
Assume that the worldline of the source (i) has no past end-point, (ii) does
not intersect the caustic of the past light-cone of the observation event, and
(iii) goes neither to the horizon nor to infinity in the past. We prove that
then for infinitely many positive integers k there is a past-pointing lightlike
geodesic of (Morse) index k from the observation event to the worldline of the
source, hence an observer at the observation event sees infinitely many images
of the source. Moreover, we demonstrate that all lightlike geodesics from an
event to a timelike curve in the domain of outer communication are confined to
a certain spherical shell. Our characterization of this spherical shell shows
that in the Kerr-Newman spacetime the occurrence of infinitely many images is
intimately related to the occurrence of centrifugal-plus-Coriolis force
reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy
Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations
This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data
Finsler geodesics in the presence of a convex function and their applications
We obtain a result about the existence of only a finite number of geodesics
between two fixed non-conjugate points in a Finsler manifold endowed with a
convex function. We apply it to Randers and Zermelo metrics. As a by-product,
we also get a result about the finiteness of the number of lightlike and
timelike geodesics connecting an event to a line in a standard stationary
spacetime.Comment: 16 pages, AMSLaTex. v2 is a minor revision: title changed, references
updated, typos fixed; it matches the published version. This preprint and
arXiv:math/0702323v3 [math.DG] substitute arXiv:math/0702323v2 [math.DG
Trend and Multi‐Frequency Analysis Through Empirical Mode Decomposition: An Application to a 20‐Year Record of Atmospheric Carbonyl Sulfide Measurements
The Empirical Mode Decomposition (EMD) is a fully non-parametric analysis of frequency modes and trends in a given series that is based on the data alone. We have devised an improved strategy based on a series of best practices to use EMD successfully in the analysis of the monthly time series of carbonyl sulfide (OCS) atmospheric mole fractions measured at NOAA network stations (2000–2020). Long-term trends and intra- and inter-annual variability has been assessed. After a phase of generally increasing mole fractions up to 2015, with a temporary decline around 2009, we found that the OCS atmospheric mole fraction subsequently decreased at all stations, reflecting a recent imbalance in its total sources and losses. Our analysis has revealed a characteristic time scale for variation of 8–10 years. The variance associated with this long-term behavior ranges from urn:x-wiley:2169897X:media:jgrd58461:jgrd58461-math-000115% to 40% of the total strength of the signal, depending on location. Apart from this complex long-term behavior, the OCS time series show a strong annual cycle, which primarily results from the well-known OCS uptake by vegetation. In addition, we have also found one more frequency of minor variance intensity in the measured mole fraction time-history, which corresponds to periods in the range of 2–3 years. This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation
On the linear response and scattering of an interacting molecule-metal system
A many-body Green's function approach to the microscopic theory of
plasmon-enhanced spectroscopy is presented within the context of localized
surface-plasmon resonance spectroscopy and applied to investigate the coupling
between quantum-molecular and classical-plasmonic resonances in
monolayer-coated silver nanoparticles. Electronic propagators or Green's
functions, accounting for the repeated polarization interaction between a
single molecule and its image in a nearby nanoscale metal, are explicitly
computed and used to construct the linear-response properties of the combined
molecule-metal system to an external electromagnetic perturbation. Shifting and
finite lifetime of states appear rigorously and automatically within our
approach and reveal an intricate coupling between molecule and metal not fully
described by previous theories. Self-consistent incorporation of this
quantum-molecular response into the continuum-electromagnetic scattering of the
molecule-metal target is exploited to compute the localized surface-plasmon
resonance wavelength shift with respect to the bare metal from first
principles.Comment: under review at Journal of Chemical Physic
Effects of age, diet and obesity on insulin secretion from isolated perfused rat pancreas: Response to glucose, arginine and glucagon-like peptide 1 (7-37)
The insulin secretory responses to glucose, arginine and glucagon-like peptide (GLP)-1-(7- 37 have been evaluated from the isolated perfused pancreas of rats with either acquired or genetic obesity, ie, a) fed ad libitum 14-mo old Sprague-Dawley rats as compared to age-matched animals subjected to two types of dietary restriction (every-other-day feeding, EOD, and 40% restriction? 40% DR), and b) 2.5-mo old genetically obese fa/fa rats as compared to the lean counterpart, In mature fed ad libitum rats, the glucose-stimulated insulin release from the perfused pancreas was increased 5-fold by addition of 0.1 nM GLP-1 (7-37), a subsequent challenge with high glucose resulted in an improvement of the first phase of insulin release, In 40% DR rats, a similar pattern of secretion was observed, with the difference of a lower response to arginine than in fed ad libitum animals, In EOD rats, the overall secretory performance of the perfused pancreas was approximately 50% lower than in the fed ad libitum group but probably adequate to the reduced weight of the animals, In genetically obese young rats, both the response to GLP-1 (7-37) anti the total insulin secretion were higher than in the lean controls. Interestingly, the maximal insulin outputs from the perfused pancreases were observed in both the groups of overweight animals, In conclusion no impairment in the secretory responsiveness of beta-cells occurs in obese animals, Conversely, at least within the age limits of the present study, the endocrine pancreas develops a compensatory ability to match the augmented insulin demand due to the over-weight. In the light of the observed great sensitivity of the isolated perfused pancreas to GLP-1 (7-37), changes in the responsiveness of beta-cells to incretins might be involved in the modulation of the endocrine pancreatic function of obese rats
Effects of life-long exercise on circulating free fatty acids and muscle triglyceride content in ageing rats.
Regular physical exercise has emerged, together with dietary restriction, as an effective intervention in delaying degenerative diseases and augmenting life span in rodents. The mechanisms involved remain largely unknown, although a beneficial influence on the age-related alteration of insulin sensitivity has been hypothesized. As muscle triglyceride (TG) accumulation is considered a reliable index of muscle insulin resistance, in this study we explored muscle TG content in 23-month-old male Sprague-Dawley rats subjected to life-long training. Plasma glucose. insulin. free fatty acid (FFA) and leptin levels were also measured. Both voluntary running in wheels (RW) and forced training in treadmill (TM) were studied. As RW rats weighed less than controls, a cohort of untrained animals, fed to pair weight (PW) with RW, was added to discriminate the effect of exercise from that of food restriction. Sedentary ad libitum fed rats served as controls. In 23-month-old RW rats. muscle TG content was reduced by 50% with respect to age-matched sedentary controls, while in TM group this reduction was smaller but still highly significant, and occurred independently on the changes in body fat mass. In both the trained rat groups, there was a significant decrease in circulating FFA levels and a trend to reduced insulin levels. In PW rats, muscle TG levels decreased similarly to RW rats, while plasma parameters were less modified. In particular, RW training was more effective than PW in preventing the age-related increase in circulating leptin levels. Our results suggest that voluntary exercise effectively counteracts the development of insulin resistance in the muscles of ageing rats as well as other related changes such as hyperlipacidaemia and compensatory hyperleptinaemia. Forced training or moderate food restriction appear slightly less effective than voluntary exercise in preventing age-dependent alterations in nutrient distribution and/or utilization. (C) 2004 Elsevier Inc. All rights reserved
Time-dependent quantum many-body theory of identical bosons in a double well: Early time ballistic interferences of fragmented and number entangled states
A time-dependent multiconfigurational self-consistent field theory is
presented to describe the many-body dynamics of a gas of identical bosonic
atoms confined to an external trapping potential at zero temperature from first
principles. A set of generalized evolution equations are developed, through the
time-dependent variational principle, which account for the complete and
self-consistent coupling between the expansion coefficients of each
configuration and the underlying one-body wave functions within a restricted
two state Fock space basis that includes the full effects of the condensate's
mean field as well as atomic correlation. The resulting dynamical equations are
a classical Hamiltonian system and, by construction, form a well-defined
initial value problem. They are implemented in an efficient numerical
algorithm. An example is presented, highlighting the generality of the theory,
in which the ballistic expansion of a fragmented condensate ground state is
compared to that of a macroscopic quantum superposition state, taken here to be
a highly entangled number state, upon releasing the external trapping
potential. Strikingly different many-body matter-wave dynamics emerge in each
case, accentuating the role of both atomic correlation and mean-field effects
in the two condensate states.Comment: 16 pages, 5 figure
A note on the existence of standard splittings for conformally stationary spacetimes
Let be a spacetime which admits a complete timelike conformal Killing
vector field . We prove that splits globally as a standard
conformastationary spacetime with respect to if and only if is
distinguishing (and, thus causally continuous). Causal but non-distinguishing
spacetimes with complete stationary vector fields are also exhibited. For the
proof, the recently solved "folk problems" on smoothability of time functions
(moreover, the existence of a {\em temporal} function) are used.Comment: Metadata updated, 6 page
- …