34,867 research outputs found

    Quantum anomalies and linear response theory

    Full text link
    The analysis of diffusive energy spreading in quantized chaotic driven systems, leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient DD that is proportional to the intensity ϵ2\epsilon^2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tϵt_{\epsilon}, and a self-generated (intrinsic) dephasing process leads to non-linear dependence of DD on ϵ2\epsilon^2.Comment: 8 pages, 2 figures, textual improvements (as in published version

    Non-equilibrium steady state of sparse systems

    Full text link
    A resistor-network picture of transitions is appropriate for the study of energy absorption by weakly chaotic or weakly interacting driven systems. Such "sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled to a bath. In the stochastic case there is an analogy to the physics of percolating glassy systems, and an extension of the fluctuation-dissipation phenomenology is proposed. In the mesoscopic case the quantum NESS might differ enormously from the stochastic NESS, with saturation temperature determined by the sparsity. A toy model where the sparsity of the system is modeled using a log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio

    Energy absorption by "sparse" systems: beyond linear response theory

    Full text link
    The analysis of the response to driving in the case of weakly chaotic or weakly interacting systems should go beyond linear response theory. Due to the "sparsity" of the perturbation matrix, a resistor network picture of transitions between energy levels is essential. The Kubo formula is modified, replacing the "algebraic" average over the squared matrix elements by a "resistor network" average. Consequently the response becomes semi-linear rather than linear. Some novel results have been obtained in the context of two prototype problems: the heating rate of particles in Billiards with vibrating walls; and the Ohmic Joule conductance of mesoscopic rings driven by electromotive force. Respectively, the obtained results are contrasted with the "Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT conference (Prague, 2011). Ref correcte

    Absorption of Energy at a Metallic Surface due to a Normal Electric Field

    Full text link
    The effect of an oscillating electric field normal to a metallic surface may be described by an effective potential. This induced potential is calculated using semiclassical variants of the random phase approximation (RPA). Results are obtained for both ballistic and diffusive electron motion, and for two and three dimensional systems. The potential induced within the surface causes absorption of energy. The results are applied to the absorption of radiation by small metal spheres and discs. They improve upon an earlier treatment which used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript

    Quantum response of weakly chaotic systems

    Full text link
    Chaotic systems, that have a small Lyapunov exponent, do not obey the common random matrix theory predictions within a wide "weak quantum chaos" regime. This leads to a novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but rather it is very sparse. This sparsity can be characterized by parameters ss and gg that reflect the percentage of large elements, and their connectivity respectively. For gg we use a resistor network calculation that has direct relation to the semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio

    Rhythms of social interaction: messaging within a massive online network

    Full text link
    We have analyzed the fully-anonymized headers of 362 million messages exchanged by 4.2 million users of Facebook, an online social network of college students, during a 26 month interval. The data reveal a number of strong daily and weekly regularities which provide insights into the time use of college students and their social lives, including seasonal variations. We also examined how factors such as school affiliation and informal online friend lists affect the observed behavior and temporal patterns. Finally, we show that Facebook users appear to be clustered by school with respect to their temporal messaging patterns
    • …
    corecore