22,203 research outputs found

    Nonequilibrium Work distributions for a trapped Brownian particle in a time dependent magnetic field

    Get PDF
    We study the dynamics of a trapped, charged Brownian particle in presence of a time dependent magnetic field. We calculate work distributions for different time dependent protocols. In our problem thermodynamic work is related to variation of vector potential with time as opposed to the earlier studies where the work is related to time variation of the potentials which depends only on the coordinates of the particle. Using Jarzynski identity and Crook's equality we show that the free energy of the particle is independent of the magnetic field, thus complementing the Bohr-van Leeuwen theorem. We also show that our system exhibits a parametric resonance in certain parameter space.Comment: 4 pages and 5 figure

    Entropy production theorems and some consequences

    Get PDF
    The total entropy production fluctuations are studied in some exactly solvable models. For these systems, the detailed fluctuation theorem holds even in the transient state, provided initially the system is prepared in thermal equilibrium. The nature of entropy production during the relaxation of a system to equilibrium is analyzed. The averaged entropy production over a finite time interval gives a better bound for the average work performed on the system than that obtained from the well known Jarzynski equality. Moreover, the average entropy production as a quantifier for information theoretic nature of irreversibility for finite time nonequilibrium processes is discussed.Comment: 12 pages, 3 figure

    Nonlinear Spinor Fields and its role in Cosmology

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-VI, VI0_0, V, III, I or isotropic Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to some restrictions on metric functions, initial anisotropy in the models Bianchi type-VI, VI0_0, V and III does not die away, while the anisotropic Bianchi type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure

    Interacting spinor and scalar fields in Bianchi type-I Universe filled with viscous fluid: exact and numerical solutions

    Full text link
    We consider a self-consistent system of spinor and scalar fields within the framework of a Bianchi type I gravitational field filled with viscous fluid in presence of a Λ\Lambda term. Exact self-consistent solutions to the corresponding spinor, scalar and BI gravitational field equations are obtained in terms of τ\tau, where τ\tau is the volume scale of BI universe. System of equations for τ\tau and \ve, where \ve is the energy of the viscous fluid, is deduced. Some special cases allowing exact solutions are thoroughly studied.Comment: 18 pages, 6 figure

    Role of c-axis pairs in V2O3 from the band-structure point of view

    Full text link
    The common interpretation of the LDA band structure of V2_{2}O3_{3} is that the apparent splitting of the a1ga_{1g} band into a low intensity structure deep below the Fermi energy and a high intensity feature above it, is due to the bonding-antibonding coupling of the vertical V-V pair. Using tight-binding fitting to --as well as first-principles NMTO downfolding of-- the spin-up LDA+U a1ga_{1g} band, we show that there are other hopping integrals which are equally important for the band shape as the integral for hopping between the partners of the pair

    Optical properties of random alloys : Application to Cu_{50}Au_{50} and Ni_{50}Pt_{50}

    Full text link
    In an earlier paper [K. K. Saha and A. Mookerjee, Phys. Rev. B 70 (2004) (in press) or, cond-mat/0403456] we had presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us [A. Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. In this communication we shall combine our formulation with the tight-binding linear muffin-tin orbitals (TB-LMTO) technique to study the optical conductivities of two alloys Cu_{50}Au_{50} and Ni_{50}Pt_{50}.Comment: 5 pages, 7 figure
    • …
    corecore