60,922 research outputs found
The importance of target audiences in the design of training actions
This paper describes the process of definition, conceptualization and implementation of a business course addressed for logistic and industrial managers. This course was designed using a blended methodology, with training in classroom, visits to enterprises and self- study, supported by an eLearning platform. The aim of this work is to create an opportunity to reflect about the decisions and strategies implemented and point future developments
Entanglement and Bell's inequality violation above room temperature in metal carboxylates
In the present work we show that a special family of materials, the metal
carboxylates, may have entangled states up to very high temperatures. From
magnetic susceptibility measurements, we have estimated the critical
temperature below which entanglement exists in the cooper carboxylate
\{Cu(OCH)\}\{Cu(OCH)(2-methylpyridine)\}, and we have
found this to be above room temperature ( K). Furthermore, the
results show that the system remains maximally entangled until close to K and the Bell's inequality is violated up to nearly room temperature
( K)
An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation
In the present work we show that planetary mean distances can be calculated
with the help of a Schrodinger-type diffusion equation. The obtained results
are shown to agree with the observed orbits of all the planets and of the
asteroid belt in the solar system, with only three empty states. Furthermore,
the equation solutions predict a fundamental orbit at 0.05 AU from solar-type
stars, a result confirmed by recent discoveries. In contrast to other similar
approaches previously presented in the literature, we take into account the
flatness of the solar system, by considering the flat solutions of the
Schrodinger-type equation. The model has just one input parameter, given by the
mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons &
Fractal
Nonviolation of Bell's Inequality in Translation Invariant Systems
The nature of quantum correlations in strongly correlated systems has been a
subject of intense research. In particular, it has been realized that
entanglement and quantum discord are present at quantum phase transitions and
able to characterize it. Surprisingly, it has been shown for a number of
different systems that qubit pairwise states, even when highly entangled, do
not violate Bell's inequalities, being in this sense local. Here we show that
such a local character of quantum correlations is in fact general for
translation invariant systems and has its origins in the monogamy trade-off
obeyed by tripartite Bell correlations. We illustrate this result in a quantum
spin chain with a soft breaking of translation symmetry. In addition, we extend
the monogamy inequality to the -qubit scenario, showing that the bound
increases with and providing examples of its saturation through uniformly
generated random pure states.Comment: Published erratum added at the en
Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements
The present work reports an experimental observation of thermal entanglement
in a clusterized spin chain formed in the compound NaCuSiO.
The presence of entanglement was investigated through two measured quantities,
an Entanglement Witness and the Entanglement of Formation, both derived from
the magnetic susceptibility. It was found that pairwise entanglement exists
below K. Tripartite entanglement was also observed below K. A theoretical study of entanglement evolution as a function of applied
field and temperature is also presented.Comment: Submited to Phys. Rev.
- …