2,244 research outputs found

    Fully Overheated Single-Electron Transistor

    Full text link
    We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise.Comment: 6 pages, 3 figures, includes Appendi

    Coulomb Blockade due to Quantum Phase-Slips Illustrated with Devices

    Full text link
    In order to illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or "devices". The setups are derived from Cooper-pair box and Cooper-pair transistor, so we refer to them as QPS-box and QPS-transistor, respectively. We demonstrate that the devices exhibit sensitivity to a charge induced by a gate electrode, this being the main signature of Coulomb blockade. Experimental realization of these devices will unambiguously prove the Coulomb blockade as an effect of coherence of phase-slip processes. We analyze the emergence of discrete charging in the limit strong phase-slips. We have found and investigated six distinct regimes that are realized depending on the relation between three characteristic energy scales: inductive and charging energy, and phase-slip amplitude. For completeness, we include a brief discussion of dual Josephson-junction devices

    Giant current fluctuations in an overheated single electron transistor

    Full text link
    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor (SET) leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.Comment: 10 pages, 11 figure

    On irreducibility of tensor products of evaluation modules for the quantum affine algebra

    Full text link
    Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient conditions for irreducibility of tensor products of such evaluation modules.Comment: 22 pages. Some references are adde

    Full Current Statistics in Diffusive Normal-Superconductor Structures

    Full text link
    We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data. We demonstrate that the calculation of the full current statistics is in fact simpler than a concrete calculation of the noise.Comment: 4 pages, 2 figures (included

    Superconducting Spin Qubits

    Full text link
    We propose and theoretically investigate spin superconducting qubits. Spin superconducting qubit consists of a single spin confined in a Josephson junction. We show that owing to spin-orbit interaction, superconducting difference across the junction can polarize this spin. We demonstrate that this enables single qubit operations and more complicated quantum gates, where spins of different qubits interact via a mutual inductance of superconducting loop where the junctions are embedded. Recent experimental realizations of Josephson junctions made of semiconductor quantum dots in contact with superconducting leads have shown that the number of electrons in the quantum dot can be tuned by a gate voltage. Spin superconducting qubit is realized when the number of electrons is odd. We discuss the qubit properties at phenomenological level. We present a microscopic theory that enables us to make accurate estimations of the qubit parameters by evaluating the spin-dependent Josephson energy in the framework of fourth-order perturbation theory.Comment: 11 pages, 8 figure

    Theory of temperature fluctuation statistics in superconductor-normal metal tunnel structures

    Full text link
    We describe the statistics of temperature fluctuations in a SINIS structure, where a normal metal island (N) is coupled by tunnel junctions (I) to two superconducting leads (S). We specify conditions under which this structure exhibits manifestly non-Gaussian fluctuations of temperature. We consider both the Gaussian and non-Gaussian regimes of these fluctuations, and the current fluctuations that are caused by the fluctuating temperature. We also describe a measurement setup that could be used to observe the temperature fluctuations.Comment: 10 pages, 9 figures, final versio
    corecore