7,652 research outputs found

    Parametric resonance at the critical temperature in high energy heavy ion collisions

    Get PDF
    Parametric resonance in soft modes at the critical temperature (TcT_{c}) in high energy heavy ion collisions is studied in the case when the temperature (TT) of the system is almost constant for a long time. By deviding the fields into three parts, zero mode (condensate), soft modes and hard modes and assuming that the hard modes are in thermal equilibrium, we derive the equation of motion for soft modes at T=TcT=T_{c}. Enhanced modes are extracted by comparing with the Mathieu equation for the condensate oscillating along the sigma axis at T=TcT=T_{c}. It is found that the soft mode of π\pi fields at about 174 MeV is enhanced.Comment: 8 pages, 1 figure Some statements and equations are modified to clarif

    Parametric amplification with a friction in heavy ion collisions

    Get PDF
    We study the effects of the expansion of the system and the friction on the parametric amplification of mesonic fields in high energy heavy ion collisions within the linear σ\sigma model . The equation of motion which is similar to Mathieu equation is derived to describe the time development of classical fields in the last stage of a heavy ion collision after the freezeout time. The enhanced mode is extracted analytically by comparison with Mathieu equation and the equation of motion is solved numerically to examine whether soft modes will be enhanced or not. It is found that the strong peak appears around 267 MeV in the pion transverse momentum distribution in cases with weak friction and high maximum temperature. This enhancement can be extracted by taking the ratio between different modes in the pion transverse momentum distribution.Comment: 10 pages, 9 figures LaTeX: appendix adde

    Topology Change of Coalescing Black Holes on Eguchi-Hanson Space

    Get PDF
    We construct multi-black hole solutions in the five-dimensional Einstein-Maxwell theory with a positive cosmological constant on the Eguchi-Hanson space, which is an asymptotically locally Euclidean space. The solutions describe the physical process such that two black holes with the topology of S^3 coalesce into a single black hole with the topology of the lens space L(2;1)=S^3/Z_2. We discuss how the area of the single black hole after the coalescence depends on the topology of the horizon.Comment: 10 pages, Some comments are added. to be published as a letter in Classical and Quantum Gravit

    Two-photon nonlinearity in general cavity QED systems

    Full text link
    We have investigated the two-photon nonlinearity at general cavity QED systems, which covers both weak and strong coupling regimes and includes radiative loss from the atom. The one- and two-photon propagators are obtained in analytic forms. By surveying both coupling regimes, we have revealed the conditions on the photonic wavepacket for yielding large nonlinearity depending on the cavity Q-value. We have also discussed the effect of radiative loss on the nonlinearity.Comment: 8 pages, 5 figure

    Theoretical framework of entangled-photon generation from biexcitons in nano-to-bulk crossover regime with planar geometry

    Full text link
    We have constructed a theoretical framework of the biexciton-resonant hyperparametric scattering for the pursuit of high-power and high-quality generation of entangled photon pairs. Our framework is applicable to nano-to-bulk crossover regime where the center-of-mass motion of excitons and biexcitons is confined. Material surroundings and the polarization correlation of generated photons can be considered. We have analyzed the entangled-photon generation from CuCl film, by which ultraviolet entangled-photon pairs are generated, and from dielectric microcavity embedding a CuCl layer. We have revealed that in the nano-to-bulk crossover regime we generally get a high performance from the viewpoint of statistical accuracy, and the generation efficiency can be enhanced by the optical cavity with maintaining the high performance. The nano-to-bulk crossover regime has a variety of degrees of freedom to tune the entangled-photon generation, and the scattering spectra explicitly reflect quantized exciton-photon coupled modes in the finite structure.Comment: 18 pages, 10 figure

    Magnetic Ordering, Orbital Ordering and Resonant X-ray Scattering in Perovskite Titanates

    Get PDF
    The effective Hamiltonian for perovskite titanates is derived by taking into account the three-fold degeneracy of t2gt_{2g} orbitals and the strong electron-electron interactions. The magnetic and orbital ordered phases are studied in the mean-field approximation applied to the effective Hamiltonian. A large degeneracy of the orbital states in the ferromagnetic phase is found in contrast to the case of the doubly degenerate ege_g orbitals. Lifting of this orbital degeneracy due to lattice distortions and spin-orbit coupling is examined. A general form for the scattering cross section of the resonant x-ray scattering is derived and is applied to the recent experimental results in YTiO3_3. The spin wave dispersion relation in the orbital ordered YTiO3_3 is also studied.Comment: 10 pages, 6 figure

    Interaction between dust grains near a conducting wall

    Get PDF
    The effect of the conducting electrode on the interaction of dust grains in a an ion flow is discussed. It is shown that two grains levitating above the electrode at the same height may attract one another. This results in the instability of a dust layer in a plasma sheath.Comment: 9 pages. 3 figures. Submitted to Plasma Physics Report
    corecore