1,139 research outputs found
Proximity effect model of ultra-narrow NbN strips
We show that narrow superconducting strips in superconducting (S) and normal
(N) states are universally described by the model presenting them as lateral
NSN proximity systems in which the superconducting central band is sandwiched
between damaged edge-bands with suppressed superconductivity.The width of the
superconducting band was experimentally determined from the value of magnetic
field at which the band transits from the Meissner state to the static vortex
state. Systematic experimental study of 4.9 nm thick NbN strips with widths in
the interval from 50 nm to 20 m, which are all smaller than the Pearl's
length, demonstrates gradual evolution of the temperature dependence of the
critical current with the change of the strip width
Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist
We performed comparative experimental investigation of superconducting NbN
nanowires which were prepared by means of positive-and negative electron-beam
lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist.
We show that nanowires with a thickness 4.9 nm and widths less than 100 nm
demonstrate at 4.2 K higher critical temperature and higher density of critical
and retrapping currents when they are prepared by negative lithography. Also
the ratio of the experimental critical-current to the depairing critical
current is larger for nanowires prepared by negative lithography. We associate
the observed enhancement of superconducting properties with the difference in
the degree of damage that nanowire edges sustain in the lithographic process. A
whole range of advantages which is offered by the negative lithography with
positive PMMA resist ensures high potential of this technology for improving
performance metrics of superconducting nanowire singe-photon detectors
Aluminum Hard Mask Technique for the Fabrication of High-Quality Submicron Nb/Al-AlOx/Nb Josephson Junctions
We have developed a combined photolithography and electron-beam lithography
fabrication process for sub-\mum to \mum-size Nb/Al-AlOx/Nb Josephson
junctions. In order to define the junction size and protect its top electrode
during anodic oxidation, we developed and used the new concept of an aluminum
hard mask. Josephson junctions of sizes down to 0.5 \mum2 have been fabricated
and thoroughly characterized. We found that they have a very high quality,
which is witnessed by the IV curves with quality parameters Vm > 50 mV and Vgap
= 2.8 mV at 4.2 K, as well as IcRN products of 1.75-1.93 mV obtained at lower
temperatures. In order to test the usability of our fabrication process for
superconducting quantum bits, we have also designed, fabricated and
experimentally investigated phase qubits made of these junctions. We found a
relaxation time of T1 = 26 ns and a dephasing time of T2 = 21 ns
- …