28 research outputs found

    Diffuse Ionized Gas in the Dwarf Irregular Galaxy DDO 53

    Full text link
    The spectral characteristics throughout the dwarf irregular galaxy DDO 53 are studied. The results are very similar to those for other irregular galaxies: high excitation and low values of the [SII]/Halpha ratio. The most likely ionization source is photon leakage from the classical HII regions, without any other source, although the interstellar medium of the galaxy is quite perturbed. Moreover, the physical conditions throughout the galaxy do not change very much because both the photon leakage percentage and the ionization temperature are very similar. In addition, the determined metal content for two HII regions indicates that DDO 53 is a low-metallicity galaxy.Comment: 32 pages, 9 figures, 7 tables. AJ, in pres

    Bounds on the mass and abundance of dark compact objects and black holes in dwarf spheroidal galaxy halos

    Get PDF
    We establish new dynamical constraints on the mass and abundance of compact objects in the halo of dwarf spheroidal galaxies. In order to preserve kinematically cold the second peak of the Ursa Minor dwarf spheroidal (UMi dSph) against gravitational scattering, we place upper limits on the density of compact objects as a function of their assumed mass. The mass of the dark matter constituents cannot be larger than 1000 solar masses at a halo density in UMi's core of 0.35 solar masses/pc^3. This constraint rules out a scenario in which dark halo cores are formed by two-body relaxation processes. Our bounds on the fraction of dark matter in compact objects with masses >3000 solar masses improve those based on dynamical arguments in the Galactic halo. In particular, objects with masses ∼105\sim 10^{5} solar masses can comprise no more than a halo mass fraction ∼0.01\sim 0.01. Better determinations of the velocity dispersion of old overdense regions in dSphs may result in more stringent constraints on the mass of halo objects. For illustration, if the preliminary value of 0.5 km/s for the secondary peak of UMi is confirmed, compact objects with masses above ∼100\sim 100 solar masses could be excluded from comprising all its dark matter halo.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter
    corecore