306 research outputs found

    RARS2 mutations in a sibship with infantile spasms

    Get PDF
    Pontocerebellar hypoplasia is a group of heterogeneous neurodevelopmental disorders characterized by reduced volume of the brainstem and cerebellum. We report two male siblings who presented with early infantile clonic seizures, and then developed infantile spasms associated with prominent isolated cerebellar hypoplasia/atrophy on magnetic resonance imaging (MRI). Using whole exome sequencing techniques, both were found to be compound heterozygotes for one previously reported and one novel mutation in the gene encoding mitochondrial arginyl-tRNA synthetase 2 (RARS2). Mutations in this gene have been classically described in pontocerebellar hypoplasia type six (PCH6), a phenotype characterized by early (often intractable) seizures, profound developmental delay, and progressive pontocerebellar atrophy. The electroclinical spectrum of PCH6 is broad and includes a number of seizure types: myoclonic, generalized tonic-clonic, and focal clonic seizures. Our report expands the characterization of the PCH6 disease spectrum and presents infantile spasms as an associated electroclinical phenotype

    Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury

    Get PDF
    There is a need for a method of real-time assessment of brain metabolism during neonatal hypoxic-ischaemic encephalopathy (HIE). We have used broadband near-infrared spectroscopy (NIRS) to monitor cerebral oxygenation and metabolic changes in 50 neonates with HIE undergoing therapeutic hypothermia treatment. In 24 neonates, 54 episodes of spontaneous decreases in peripheral oxygen saturation (desaturations) were recorded between 6 and 81 h after birth. We observed differences in the cerebral metabolic responses to these episodes that were related to the predicted outcome of the injury, as determined by subsequent magnetic resonance spectroscopy derived lactate/N-acetyl-aspartate. We demonstrated that a strong relationship between cerebral metabolism (broadband NIRS-measured cytochrome-c-oxidase (CCO)) and cerebral oxygenation was associated with unfavourable outcome; this is likely to be due to a lower cerebral metabolic rate and mitochondrial dysfunction in severe encephalopathy. Specifically, a decrease in the brain tissue oxidation state of CCO greater than 0.06 µM per 1 µM brain haemoglobin oxygenation drop was able to predict the outcome with 64% sensitivity and 79% specificity (receiver operating characteristic area under the curve = 0.73). With further work on the implementation of this methodology, broadband NIRS has the potential to provide an early, cotside, non-invasive, clinically relevant metabolic marker of perinatal hypoxic-ischaemic injury

    The Effect of Corporate Social Responsibility on Financial Performance with Real Manipulation as a Moderating Variable

    Get PDF
    This study aimed to obtain empirical evidence about the effect of real manipulation practices on Corporate Social Responsibility (CSR), and further examined the impact of real manipulation on relationship between CSR and the financial performance of companies in the future. 27 companies listed on Indonesian Stock Exchange during the years 2006 - 2008 were selected as sample for this study. Data were collected by purposive sampling method and statistical method used for analysis was ordinary least square regression. The study provided empirical evidence that companies engaged in the practice of real manipulation had no influence on CSR activities. The results showed that the higher level of real manipulation on operation cash flow leads to negative effect on the relationship between CSR and financial performance

    Proton Magnetic Resonance Spectroscopy Lactate/N-Acetylaspartate within 2 weeks of birth accurately predicts 2-year motor, cognitive and language outcomes in Neonatal Encephalopathy after Therapeutic Hypothermia

    Get PDF
    OBJECTIVE: Brain proton (1H) magnetic resonance spectroscopy (MRS) lactate/N-Acetylaspartate (Lac/NAA) peak area ratio is used for prognostication in Neonatal Encephalopathy (NE). At 3-Tesla in NE babies, the objectives were to assess: (i) sensitivity and specificity of basal ganglia and thalamus (BGT) 1H MRS Lac/NAA for prediction of Bayley III outcomes at 2-years using optimized metabolite fitting (Tarquin) with threonine and total NAA; (ii) prediction of motor outcome with diffusion-weighted MRI; iii) BGT Lac/NAA correlation with the NICHD MRI score. MATERIALS AND METHODS: 55 (16 inborn, 39 outborn) NE infants at 39w+5d (35w+5d-42w+0d) admitted between February 2012 and August 2014 to UCH for therapeutic hypothermia underwent MRI and 1H MRS at 3T on day 2-14 (median day 5). MRIs were scored. Bayley III was assessed at 24 (22-26) months. RESULTS: Sixteen babies died (1 inborn, 15 outborn); 20, 19 and 21 babies had poor motor, cognitive and language outcomes. Using a threshold of 0.39, sensitivity and specificity of BGT Lac/NAA for 2-year motor outcome was 100% and 97%, cognition 90% and 97% and language 81% and 97% respectively. Sensitivity and specificity for motor outcome of mean diffusivity (MD; threshold 0.001 mm2 /s) up to day 9 was 72% and 39% and fractional anisotropy (FA; threshold 0.198) was 100%, and 94% respectively. Lac/NAA correlated with BGT injury on NICHD scores (2A, 2B, 3). CONCLUSIONS: BGT Lac/NAA on 1H MRS at 3T within 14 days accurately predicts 2-year motor, cognitive and language outcome and may be a marker directing decisions for therapies after cooling

    Use of green solvents as pre-treatment of dissolving pulp to decrease CS2 consumption from viscose production

    Get PDF
    Choline chloride-based deep eutectic solvents are widely used in biomass processing. In this work, four different green solvent mixtures were used as pre-treatment of acid sulphite dissolving pulp with the hypothesis of increasing the possibilities to produce viscose fibres and decreasing the use of the harmful and toxic carbon disulphide in the process. The experiments were performed at two different pulp to solvent mass ratios. Pulp quality parameters were also measured to determine the suitability of the pretreatment: a-cellulose, viscosity, lignin and pentosan content. In addition, X-ray diffraction analysis of pulps at the best solid to liquid ratio was performed to obtain the influence of the crystallinity index. Best results were obtained with the use of lactic acid, with reactivity values close to 94%, giving a reduction of CS2 usage of 15.83%. Furthermore, a linear relationship between the crystallinity index calculated by the XRD and reactivity with a regression factor of 0.87 was found

    Post mortem magnetic resonance imaging in the fetus, infant and child: A comparative study with conventional autopsy (MaRIAS Protocol)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minimally invasive autopsy by post mortem magnetic resonance (MR) imaging has been suggested as an alternative for conventional autopsy in view of the declining consented autopsy rates. However, large prospective studies rigorously evaluating the accuracy of such an approach are lacking. We intend to compare the accuracy of a minimally invasive autopsy approach using post mortem MR imaging with that of conventional autopsy in fetuses, newborns and children for detection of the major pathological abnormalities and/or determination of the cause of death.</p> <p>Methods/Design</p> <p>We recruited 400 consecutive fetuses, newborns and children referred for conventional autopsy to one of the two participating hospitals over a three-year period. We acquired whole body post mortem MR imaging using a 1.5 T MR scanner (Avanto, Siemens Medical Solutions, Enlargen, Germany) prior to autopsy. The total scan time varied between 90 to 120 minutes. Each MR image was reported by a team of four specialist radiologists (paediatric neuroradiology, paediatric cardiology, paediatric chest & abdominal imaging and musculoskeletal imaging), blinded to the autopsy data. Conventional autopsy was performed according to the guidelines set down by the Royal College of Pathologists (UK) by experienced paediatric or perinatal pathologists, blinded to the MR data. The MR and autopsy data were recorded using predefined categorical variables by an independent person.</p> <p>Discussion</p> <p>Using conventional post mortem as the gold standard comparator, the MR images will be assessed for accuracy of the anatomical morphology, associated lesions, clinical usefulness of information and determination of the cause of death. The sensitivities, specificities and predictive values of post mortem MR alone and MR imaging along with other minimally invasive post mortem investigations will be presented for the final diagnosis, broad diagnostic categories and for specific diagnosis of each system.</p> <p>Clinical Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01417962">NCT01417962</a></p> <p><b>NIHR Portfolio Number: </b>6794</p

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
    corecore