1 research outputs found

    Can three-flavor oscillations solve the solar neutrino problem?

    Get PDF
    The most promising solution to the solar neutrino problem are neutrino oscillations, which usually are analyzed within the reduced 2-flavor scheme, because the solutions found therein reasonably well reproduce the recent data of Super-Kamiokande about the recoil-electron energy spectrum, zenith-angle and seasonal variations, and the event rate data of all the neutrino detectors. In this work, however, a survey of the complete parameter space of 3-flavor oscillations is performed. Basically eight new additional solutions could be identified, where the best one with \Delta m(12)^2=2.7x10^(-10) eV^2, \Delta m(13)^2=1.0x10^(-5) eV^2, \Theta(12)=23, and \Theta(13)=1.3 (denoted SVO) is slightly more probable than any 2-flavor solution. However, including the results of the atmospheric neutrino problem excludes all 3-flavour solutions apart from the SLMA-solution (\Delta m(12)^2=7.9x10^(-6) eV^2, \Delta m(13)^2=2.5x10^(-4) eV^2, \Theta(12)=1.4, and \Theta(13)=20). Besides, the ability of SNO and Borexino to discriminate the various 2- and 3-flavor solutions is investigated. Only with very good statistics in these experiments the correct solution to the solar neutrino problem can be identified unambiguously.Comment: 22 pages, 19 figures, REVTeX, submitted to Phys.Rev.D, article with better resolved figures available under http://www.mpa-garching.mpg.de/~schlattl/public.htm
    corecore