116 research outputs found
Predicting crystal growth via a unified kinetic three-dimensional partition model
Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years1, 2, 3, 4, 5, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy6, 7, 8. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system9, 10, 11. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal–organic frameworks, calcite, urea and L-cystine
<i>CrystalGrower</i>: a generic computer program for Monte Carlo modelling of crystal growth.
From Europe PMC via Jisc Publications RouterHistory: ppub 2020-11-01, epub 2020-11-18Publication status: PublishedA Monte Carlo crystal growth simulation tool, CrystalGrower, is described which is able to simultaneously model both the crystal habit and nanoscopic surface topography of any crystal structure under conditions of variable supersaturation or at equilibrium. This tool has been developed in order to permit the rapid simulation of crystal surface maps generated by scanning probe microscopies in combination with overall crystal habit. As the simulation is based upon a coarse graining at the nanoscopic level features such as crystal rounding at low supersaturation or undersaturation conditions are also faithfully reproduced. CrystalGrower permits the incorporation of screw dislocations with arbitrary Burgers vectors and also the investigation of internal point defects in crystals. The effect of growth modifiers can be addressed by selective poisoning of specific growth sites. The tool is designed for those interested in understanding and controlling the outcome of crystal growth through a deeper comprehension of the key controlling experimental parameters
Lifestyles, arterial aging, and its relationship with the intestinal and oral microbiota (MIVAS III study): a research protocol for a cross-sectional multicenter study
The microbiota is increasingly recognized as a significant factor in the pathophysiology of many diseases, including cardiometabolic diseases, with lifestyles probably exerting the greatest influence on the composition of the human microbiome. The main objectives of the study are to analyze the association of lifestyles (diet, physical activity, tobacco, and alcohol) with the gut and oral microbiota, arterial aging, and cognitive function in subjects without cardiovascular disease in the Iberian Peninsula. In addition, the study will examine the mediating role of the microbiome in mediating the association between lifestyles and arterial aging as well as cognitive function.Methods and analysisMIVAS III is a multicenter cross-sectional study that will take place in the Iberian Peninsula. One thousand subjects aged between 45 and 74 years without cardiovascular disease will be selected. The main variables are demographic information, anthropometric measurements, and habits (tobacco and alcohol). Dietary patterns will be assessed using a frequency consumption questionnaire (FFQ) and the Mediterranean diet adherence questionnaire. Physical activity levels will be evaluated using the International Physical Activity Questionnaire (IPAQ), Marshall Questionnaire, and an Accelerometer (Actigraph). Body composition will be measured using the Inbody 230 impedance meter. Arterial aging will be assessed through various means, including measuring medium intimate carotid thickness using the Sonosite Micromax, conducting analysis with pulse wave velocity (PWA), and measuring pulse wave velocity (cf-PWV) using the Sphygmocor System. Additional cardiovascular indicators such as Cardio Ankle Vascular Index (CAVI), ba-PWV, and ankle-brachial index (Vasera VS-2000®) will also be examined. The study will analyze the intestinal microbiota using the OMNIgene GUT kit (OMR−200) and profile the microbiome through massive sequencing of the 16S rRNA gene. Linear discriminant analysis (LDA), effect size (LEfSe), and compositional analysis, such as ANCOM-BC, will be used to identify differentially abundant taxa between groups. After rarefying the samples, further analyses will be conducted using MicrobiomeAnalyst and R v.4.2.1 software. These analyses will include various aspects, such as assessing α and β diversity, conducting abundance profiling, and performing clustering analysis.DiscussionLifestyle acts as a modifier of microbiota composition. However, there are no conclusive results demonstrating the mediating effect of the microbiota in the relationship between lifestyles and cardiovascular diseases. Understanding this relationship may facilitate the implementation of strategies for improving population health by modifying the gut and oral microbiota
Exploring Mexican adolescents' perceptions of environmental health risks: a photographic approach to risk analysis
The objective of this study was to explore Mexican adolescents' perceptions of environmental health risks in contaminated urban areas, and to test the environmental photography technique as a research tool for engaging adolescents in community-based health research. The study was conducted with 74 adolescents from two communities in the city of San Luis Potosi, Mexico. Participants were provided with disposable cameras and asked to take photographs of elements and situations which they believed affected their personal health both at home and outside their homes. They were also asked to describe each photograph in writing. Photographs and written explanations were analyzed by using quantitative and qualitative content analysis. Risk perception plays a crucial role in the development of Risk Communication Programs (RCPs) aimed at the improvement of community health. The photography technique opens up a promising field for environmental health research since it affords a realistic and concise impression of the perceived risks. Adolescents in both communities perceived different environmental health risks as detrimental to their well-being, e.g. waste, air pollution, and lack of hygiene. Yet, some knowledge gaps remain which need to be addressed
Taking Two-Photon Excitation to Exceptional Path-Lengths in Photonic Crystal Fiber
The well-known, defining feature of two-photon excitation (TPE) is the tight, three-dimensional confinement of excitation at the intense focus of a laser beam. The extremely small excitation volume, on the order of 1 μm3 (1 femtoliter), is the basis of far-reaching applications of TPE in fluorescence imaging, photodynamic therapy, nanofabrication, and three-dimensional optical memory. Paradoxically, the difficulty of detecting photochemical events in such a small volume is a barrier to the development of the two-photon-activated molecular systems that are essential to the realization of such applications. We show, using two-photon-excited fluorescence to directly visualize the excitation path, that confinement of both laser beam and sample solution within the 20 μm hollow core of a photonic crystal fiber permits TPE to be sustained over an extraordinary path-length of more than 10 cm, presenting a new experimental paradigm for ultrasensitive studies of two-photon-induced processes in solution. (Figure Presented).We are grateful to the Koerber Foundation (Germany) and the EPSRC (UK) for financial support. G.O.S.W. is a recipient of an EPSRC Prize Postdoctoral Fellowshi
To which world regions does the valence–dominance model of social perception apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of
how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social
judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether
these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across
11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy,
the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated
dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance
model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed
when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007);
L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from
CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social
Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing
Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were
supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E.
Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council
of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad
de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant
from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick
and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak
Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported
by a French National Research Agency ‘Investissements d’Avenir’ programme grant
(ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research
Training Program Scholarship. The Raipur Group is thankful to: (1) the University
Grants Commission, New Delhi, India for the research grants received through its
SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science;
and (2) the Center for Translational Chronobiology at the School of Studies in Life
Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by
a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was
supported by grants from the Beijing Natural Science Foundation (5184035) and CAS
Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported
by the National Science Foundation Graduate Research Fellowship (R010138018). We
acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States
International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E.
Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova);
S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of
Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R.
C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New
Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T.
Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera);
J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B.
Todorova (University of Vienna, Austria). The funders had no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog
Ignored visual context does not induce latent learning
People usually become faster at finding a visual target after repeated exposure to the same search display. This effect, known as contextual cueing, is often thought to rely on a highly efficient learning mechanism, relatively unconstrained by the availability of attentional resources. Consistent with this view, experimental evidence suggests that contextual cueing can be found even when participants are instructed to ignore the repeated visual context, although this learning remains latent until the context receives full attention. The present study explores the contribution of selective attention to contextual cueing in four high-powered preregistered experiments. None of them supported the hypothesis that latent learning can occur without selective attention. In general, our results suggest that selective attention to visual context plays an essential role in both the acquisition and the expression of contextual cueing
- …