4 research outputs found
Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals
In antecedent experiments the electron screening energies of the d+d
reactions in metallic environments have been determined to be enhanced by an
order of magnitude in comparison to the case of gaseous deuterium targets. The
analytical models describing averaged material properties have not been able to
explain the experimental results so far. Therefore, a first effort has been
undertaken to simulate the dynamics of reacting deuterons in a metallic lattice
by means of an ab-initio Hartree-Fock calculation of the total electrostatic
force between the lattice and the successively approaching deuterons via path
integration. The calculations have been performed for Li and Ta, clearly
showing a migration of electrons from host metallic to the deuterium atoms.
However, in order to avoid more of the necessary simplifications in the model
the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.
Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS
Vitamin D is an important determinant of bone health at all ages. The plasma concentrations of 25-hydroxy vitamin D (25-OH D) and other metabolites are used as biomarkers for vitamin sufficiency and function. To allow for the simultaneous determination of five vitamin D metabolites, 25-OH D3, 25-OH D2, 24,25-(OH)2 D3, 1,25-(OH)2 D3, and 1,25-(OH)2 D2, in low volumes of human plasma, an assay using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) was established. Plasma samples were spiked with isotope-labeled internal standards and pretreated using protein precipitation, solid-phase extraction (SPE) and a Diels–Alder derivatization step with 4-phenyl-1,2,4-triazoline-3,5-dione. The SPE recovery rates ranged from 55% to 85%, depending on the vitamin D metabolite; the total sample run time was <5 min. Mass spectrometry was conducted using positive ion electrospray ionization in the multiple reaction monitoring mode on a quadrupole–quadrupole-linear ion trap instrument after pre-column addition of methylamine to increase the ionization efficiency. The intra- and inter-day relative standard deviations were 1.6–4.1% and 3.7–6.8%, respectively. The limit of quantitation for these compounds was determined to be between 10 and 20 pg/mL. The 25-OH D results were compared with values obtained for reference materials (DEQAS). In addition, plasma samples were analyzed with two additional Diasorin antibody assays. All comparisons with conventional methods showed excellent correlations (r2 = 0.9738) for DEQAS samples, demonstrating the high degree of comparability of the new UHPLC-MS/MS technique to existing methods