4,116 research outputs found

    Subwavelength internal imaging by means of the wire medium

    Full text link
    Evanescent wave amplification is observed, for the first time to our knowledge, inside a half-wavelength-thick wire medium slab used for subwavelength imaging. The wire medium is analyzed using both a spatially dispersive finite-difference time-domain (FDTD) method and a full-wave commercial electromagnetic simulator CST Microwave Studio. In this work we demonstrate that subwavelength details of a source placed at a distance of one-tenth of a wavelength from a wire medium slab can be detected inside the slab with a resolution of approximately one-tenth of a wavelength in spite of the fact that they cannot be resolved at the front interface of the device, due to the rapid decay of evanescent spatial harmonics in free space

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses

    Full text link
    In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys. A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical approximation the general theory of calculation of effective currents and sources generating bremsstrahlung of an arbitrary number of soft quarks and soft gluons at collision of a high-energy color-charged particle with thermal partons in a hot quark-gluon plasma, is developed. For the case of one- and two-scattering thermal partons with radiation of one or two soft excitations, the effective currents and sources are calculated in an explicit form. In the model case of `frozen' medium, approximate expressions for energy losses induced by the most simple processes of bremsstrahlung of soft quark and soft gluon, are derived. On the basis of a conception of the mutual cancellation of singularities in the sum of so-called `diagonal' and `off-diagonal' contributions to the energy losses, an effective method of determining color factors in scattering probabilities, containing the initial values of Grassmann color charges, is suggested. The dynamical equations for Grassmann color charges of hard particle used by us early are proved to be insufficient for investigation of the higher radiative processes. It is shown that for correct description of these processes the given equations should be supplemented successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure
    corecore