4,116 research outputs found
Subwavelength internal imaging by means of the wire medium
Evanescent wave amplification is observed, for the first time to our
knowledge, inside a half-wavelength-thick wire medium slab used for
subwavelength imaging. The wire medium is analyzed using both a spatially
dispersive finite-difference time-domain (FDTD) method and a full-wave
commercial electromagnetic simulator CST Microwave Studio. In this work we
demonstrate that subwavelength details of a source placed at a distance of
one-tenth of a wavelength from a wire medium slab can be detected inside the
slab with a resolution of approximately one-tenth of a wavelength in spite of
the fact that they cannot be resolved at the front interface of the device, due
to the rapid decay of evanescent spatial harmonics in free space
Subexponential estimations in Shirshov's height theorem (in English)
In 1993 E. I. Zelmanov asked the following question in Dniester Notebook:
"Suppose that F_{2, m} is a 2-generated associative ring with the identity
x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential
growth?" We show that the nilpotency degree of l-generated associative algebra
with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l
(nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by
this result. It is the consequence of one fact, which is based on combinatorics
of words. Let l, n and d>n be positive integers. Then all the words over
alphabet of cardinality l which length is greater than Psi(n,d,l) are either
n-divided or contain d-th power of subword, where a word W is n-divided, if it
can be represented in the following form W=W_0 W_1...W_n such that W_1 >'
W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov
proved that the set of non n-divided words over alphabet of cardinality l has
bounded height h over the set Y consisting of all the words of degree <n.
Original Shirshov's estimation was just recursive, in 1982 double exponent was
obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation.
We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our
proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link
arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55
Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses
In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys.
A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical
approximation the general theory of calculation of effective currents and
sources generating bremsstrahlung of an arbitrary number of soft quarks and
soft gluons at collision of a high-energy color-charged particle with thermal
partons in a hot quark-gluon plasma, is developed. For the case of one- and
two-scattering thermal partons with radiation of one or two soft excitations,
the effective currents and sources are calculated in an explicit form. In the
model case of `frozen' medium, approximate expressions for energy losses
induced by the most simple processes of bremsstrahlung of soft quark and soft
gluon, are derived. On the basis of a conception of the mutual cancellation of
singularities in the sum of so-called `diagonal' and `off-diagonal'
contributions to the energy losses, an effective method of determining color
factors in scattering probabilities, containing the initial values of Grassmann
color charges, is suggested. The dynamical equations for Grassmann color
charges of hard particle used by us early are proved to be insufficient for
investigation of the higher radiative processes. It is shown that for correct
description of these processes the given equations should be supplemented
successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure
- …