4 research outputs found
Geometry and quantum delocalization of interstitial oxygen in silicon
The problem of the geometry of interstitial oxygen in silicon is settled by
proper consideration of the quantum delocalization of the oxygen atom around
the bond-center position. The calculated infrared absorption spectrum accounts
for the 517 and 1136 cm bands in their position, character, and isotope
shifts. The asymmetric lineshape of the 517 cm peak is also well
reproduced. A new, non-infrared-active, symmetric-stretching mode is found at
596 cm. First-principles calculations are presented supporting the
nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures
included), accepted in PR