2,486 research outputs found

    Isoscalar-isovector mass splittings in excited mesons

    Full text link
    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure. CMU-HEP93-23/DOE-ER-40682-4

    Why is the B -> eta' X decay width so large ?

    Full text link
    New mechanism for the observed inclusive B -> \eta'X decay is suggested. We argue that the dominant contribution to this amplitude is due to the Cabbibo favored b -> \bar{c}cs process followed by the transition \bar{c}c -> \eta'. A large magnitude of the "intrinsic charm" component of \eta' is of critical importance in our approach. Our results are consistent with an unexpectedly large Br(B -> \eta'+X) \sim 10^{-3} recently announced by CLEO. We stress the uniqueness of this channel for 0^{-+} gluonia search.Comment: Comments on a mixing model for intrinsic charm and pre-asymptotic effects and some references are added. Latex, 9 page

    Entangling photons via the double quantum Zeno effect

    Full text link
    We propose a scheme for entangling two photons via the quantum Zeno effect, which describes the inhibition of quantum evolution by frequent measurements and is based on the difference between summing amplitudes and probabilities. For a given error probability PerrorP_{\rm error}, our scheme requires that the one-photon loss rate Ο1Îł\xi_{1\gamma} and the two-photon absorption rate Ο2Îł\xi_{2\gamma} in some medium satisfy Ο1Îł/Ο2Îł=2Perror2/π2\xi_{1\gamma}/\xi_{2\gamma}=2P_{\rm error}^2/\pi^2, which is significantly improved in comparison to previous approaches. Again based on the quantum Zeno effect, as well as coherent excitations, we present a possibility to fulfill this requirement in an otherwise linear optics set-up.Comment: 4 pages RevTeX, 2 figure

    Covariant Wave Function Reduction and Coherent Decays of Kaon Pair

    Get PDF
    The recently developed relativistically covariant formulation of wave function reduction is illustrated for Lipkin's proposal to study CP violation in the coherent decay of kaon pairs. Covariant results are obtained in agreement with an amplitude approach proposed in the literature.Comment: 6 pages latex and 2 postscript figure in one file, Z-compressed .tar file created by uufile

    Generator Coordinate Truncations

    Get PDF
    We investigate the accuracy of several schemes to calculate ground-state correlation energies using the generator coordinate technique. Our test-bed for the study is the sdsd interacting boson model, equivalent to a 6-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using the S3S_3 subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest. On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy. We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation (top-GOA), and show that it works reasonably well when the number of boson is four or larger.Comment: 19 pages, 6 eps figure

    Neutrino oscillations in the field of a rotating deformed mass

    Full text link
    The neutrino oscillations in the field of a rotating deformed mass is investigated. The phase shift is evaluated in the case of weak field limit, slow rotation and small deformation. To this aim the Hartle-Thorne metric is used, which is an approximate solution of the vacuum Einstein equations accurate to second order in the rotation parameter a/Ma/M and to first order in the mass quadrupole moment qq. Implications on atmospheric, solar and astrophysical neutrinos are discussed.Comment: 16 pages; to appear in PL

    Beyond the relativistic mean-field approximation (II): configuration mixing of mean-field wave functions projected on angular momentum and particle number

    Get PDF
    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field + Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent ÎŽ\delta-interaction in the pairing channel. Illustrative calculations are performed for 24^{24}Mg, 32^{32}S and 36^{36}Ar, and compared with results obtained employing the model developed in the first part of this work, i.e. without particle-number projection, as well as with the corresponding non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 37 pages, 10 figures, submitted to Physical Review

    Final State Interactions and New Physics in B -> pi K Decays

    Full text link
    Within the Standard Model, and if one assumes that soft rescattering effects are negligible, the CP asymmetry A^dir_CP (B^\pm -> \pi^\pm K) is predicted to be very small and the ratio R = BR(B_d -> \pi^\mp K^\pm)/BR(B^\pm -> \pi^\pm K) provides a bound on the angle \gamma of the unitarity triangle, sin^2 \gamma \leq R. We estimate the corrections from soft rescattering effects using an approach based on Regge phenomenology, and find effects of order 10% with large uncertainties. In particular, we conclude that A^dir_CP \sim 0.2 and sin^2 \gamma \sim 1.2 R could not be taken unambiguously to signal New Physics. Using SU(3) relations, we suggest experimental tests that could constrain the size of the soft rescattering effects thus reducing the related uncertainty. Finally, we study the effect of various models of New Physics on A^dir_CP and on R.Comment: 20 pages, RevTex, no figures; a few typos corrected, references added, brief additional discussion of uncertanties is adde
    • 

    corecore