355 research outputs found

    Staphylococcus aureus resists UVA at low irradiance but succumbs in the presence of TiO2 photocatalytic coatings

    Get PDF
    The aim of this study was to evaluate the bactericidal effect of reactive oxygen species (ROS) generated upon irradiation of photocatalytic TiO 2 surface coatings using low levels of UVA and the consequent killing of Staphylococcus aureus. The role of intracellular enzymes catalase and superoxide dismutase in protecting the bacteria was investigated using mutant strains. Differences were observed in the intracellular oxidative stress response and viability of S. aureus upon exposure to UVA; these were found to be dependent on the level of irradiance and not the total UVA dose. The wild type bacteria were able to survive almost indefinitely in the absence of the coatings at low UVA irradiance (LI, 1 mW/cm 2 ), whereas in the presence of TiO 2 coatings, no viable bacteria were measurable after 24 h of exposure. At LI, the lethality of the photocatalytic effect due to the TiO 2 surface coatings was correlated with high intracellular oxidative stress levels. The wild type strain was found to be more resistant to UVA at HI compared with an identical dose at LI in the presence of the TiO 2 coatings. The UVA-irradiated titania operates by a “stealth” mechanism at low UVA irradiance, generating low levels of extracellular lethal ROS against which the bacteria are defenceless because the low light level fails to induce the oxidative stress defence mechanism of the bacteria. These results are encouraging for the deployment of antibacterial titania surface coatings wherever it is desirable to reduce the environmental bacterial burden under typical indoor lighting conditions

    Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment

    Get PDF
    The concentration of antiretroviral drugs in wastewater treatment plants (WWTP) effluents and surface waters of many countries has increased significantly due to their widespread use for HIV treatment. In this study, the removal of stavudine and zidovudine under UV254 photolysis or UV254/H2O2 was investigated in a microcapillary film (MCF) photoreactor, using minimal water samples quantities. The UV254 quantum yield of zidovudine, (2.357 ± 0.0589)·10−2 mol ein−1 (pH 4.0–8.0), was 28-fold higher that the yield of stavudine (8.34 ± 0.334)·10−4 mol ein−1 (pH 6.0–8.0). The second-order rate constant kOH,iof reaction of hydroxyl radical with the antiretrovirals (UV254/H2O2 process) were determined by kinetics modeling: (9.98 ± 0.68)·108 M−1 s−1 (pH 4.0–8.0) for zidovudine and (2.03 ± 0.18)·109 M−1 s−1 (pH 6.0–8.0) for stavudine. A battery of ecotoxicological tests (i.e. inhibition growth, bioluminescence, mutagenic and genotoxic activity) using bacteria (Aliivibrio fischeri, Salmonella typhimurium), crustacean (Daphnia magna) and algae (Raphidocelis subcapitata) revealed a marked influence of the UV dose on the ecotoxicological activity. The UV254/H2O2 treatment process reduced the ecotoxicological risk associated to direct photolysis of the antiretrovirals aqueous solutions, but required significantly higher UV254 doses (≄2000 mJ cm−2) in comparison to common water UV disinfection processes

    A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for solar photocatalytic degradation of water contaminants

    Get PDF
    The design and operation of a new solar photoreactor prototype named Offset Multi Tubular Photoreactor (OMTP) is presented. The OMTP advances over the compound parabolic collector (CPC) photoreactor, which is one of the most efficient design for large-scale solar detoxification of water and wastewater. The OMTP design is based on a simple modification of the common CPC and included a supplementary set of tubes in the space occupied by the axes of intersection of the CPC reflective involutes. This new reactor configuration increased the irradiated reactor volume by 79% and the fluid residence time by up to 1.8-fold in comparison to the CPC, for the same solar irradiated area (footprint). The model parameters used for comparing and scaling the OMPT and CPC were ÎČ (reactor volume/total volume), α (area of absorption/total volume), αg (physical area/total volume), degradation efficiency ηα per unit area, and the operating volume. The total solar energy absorbed in the reactors (1.74 m2 footprint) was 15.17 W for the CPC and 21.86 W for the OMTP, which represents an overall gain of 44% for the latter. The performance of the OMTP and CPC were compared at the same value of solar exposure, ÎČ of 0.3 with optimal photocatalyst loading of 0.25 g/L titanium dioxide (TiO2 P25). The degradation efficiencies of methylene blue, dichloroacetic acid, 4-chlorophenol (120 ppm initial concentration) in the OMTP were up to 81%, 125%, 118% and 242% higher, respectively, in comparison to the CPC after 8000 J/m2 of accumulated solar energy. The OMTP should outperform the CPC in environmental and renewable energy applications of solar heterogeneous photocatalysis

    Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine

    Get PDF
    Photocatalysts were characterized by ICP-EOS, N2 adsorption-desorption, XRD, XPS, and DR-UV-Vis spectroscopy. Four recalcitrant herbicides and pesticides (diuron, o-phenylphenol, 2-methyl-4-chlorophenoxyacetic acid (MCPA) and terbuthylazine) were subjected to degradation by ozonation, photolytic ozonation, photocatalysis and photocatalytic ozonation using the prepared catalysts under simulated solar irradiation in a laboratory scale system. The boron that was not incorporated to the TiO2 interstitial positions was unstable and leached to the solution. The washed B-doped TiO2 catalysts, with 0.5-0.8 wt.% of interstitial boron were more active than bare TiO2 for the removal and mineralization of the target compounds. The combination of ozonation and photocatalysis led to faster mineralization rates and allowed the complete removal of the pesticides below the regulatory standards. The B-doped catalyst was stable and maintained 75% mineralization after 3 consecutive runs

    Synthesis of Mg-Al layered double hydroxides by electrocoagulation

    Get PDF
    Recently, layered double hydroxides (LDHs) have attracted much consideration due to their versatility and easily manipulating properties and their potential applications such as anion exchangers, support of catalysts, flame retardants, biomedical drug delivery. A novel method for the in-situ preparation in situ of LDHs, using electrocoagulation (EC) processes was developed, the EC process was performed under two different conditions, at 5 mA m−2, changing polarity of the electrodes to find out the composition that leads to LDHs generation. The final product was characterized using XRD, BET and FTIR techniques. This method presented the following advantages: (1) Simultaneously LDHs synthesis and wastewater treatment by ion removal; (2) Polarity control allows to manipulate the M2+/M3+ molar ratio, LDHs properties and its potential applications; (3) The method spent less time to carry out the synthesis and; (4) it did not need complicated solid-liquid separation processes

    Ozone membrane contactor to intensify gas/liquid mass transfer and contaminants of emerging concern oxidation

    Get PDF
    A tubular porous borosilicate membrane contactor was investigated for ozone gas/water mass transfer and the removal of contaminants of emerging concern (CECs) in water. Ozone gas/water contact occurs on the membrane shell-side, which is coated with a photocatalyst (TiO2-P25), as the ozone gas stream is fed from the lumen side and permeates through the pores generating micro-sized ozone bubbles uniformly delivered to the annular reaction zone where the contaminated water to be treated flows. Under continuous flow, water pH at 3.0 and temperature at 20 oC, the volumetric mass transfer coefficient (KLa) ranged from 3.5 to 9.0 min-1 and improved with the increase of gas flow rate (QG, 1.5-fold from 0.15 to 1.0 Ndm3 min-1) and liquid flow rate (QL, 2.0-fold from 20 to 50 L h-1), due to enhanced turbulence on the membrane shell-side and annular zone. The mass transfer efficiency was more pronounced as the QG decreased and the QL increased, which is advantageous for large-scale applications. The main resistances to ozone transfer were in the water phase boundary layer (53-76%) and in the membrane (24-47%; kM = (1.14 ± 0.01) × 10-4 m s-1). For an ozone dose of 12 g m-3 and residence time of 3.9 s, removals ≄ 80% were achieved for 13 of 19 CECs spiked in demineralized water (each 10 ÎŒg L-1), demonstrating the applicability of this membrane contactor for ozonation treatment. Photocatalytic ozonation (O3/UVC/TiO2) did not significantly improve the treatment performance due to the low residence time inside the contactor

    Staphylococcus aureus resists UVA at low irradiance but succumbs in the presence of TiO2 photocatalytic coatings

    Get PDF
    The aim of this study was to evaluate the bactericidal effect of reactive oxygen species (ROS) generated upon irradiation of photocatalytic TiO2 surface coatings using low levels of UVA and the consequent killing of Staphylococcus aureus. The role of intracellular enzymes catalase and superoxide dismutase in protecting the bacteria was investigated using mutant strains. Differences were observed in the intracellular oxidative stress response and viability of S. aureus upon exposure to UVA; these were found to be dependent on the level of irradiance and not the total UVA dose. The wild type bacteria were able to survive almost indefinitely in the absence of the coatings at low UVA irradiance (LI, 1 mW/cm2), whereas in the presence of TiO2 coatings, no viable bacteria were measurable after 24 h of exposure. At LI, the lethality of the photocatalytic effect due to the TiO2 surface coatings was correlated with high intracellular oxidative stress levels. The wild type strain was found to be more resistant to UVA at HI compared with an identical dose at LI in the presence of the TiO2 coatings. The UVA-irradiated titania operates by a “stealth” mechanism at low UVA irradiance, generating low levels of extracellular lethal ROS against which the bacteria are defenceless because the low light level fails to induce the oxidative stress defence mechanism of the bacteria. These results are encouraging for the deployment of antibacterial titania surface coatings wherever it is desirable to reduce the environmental bacterial burden under typical indoor lighting conditions

    Hydrophobic cellulose-based and non-woven fabrics coated with mesoporous TiO2 and their virucidal properties under indoor light

    Get PDF
    Antiviral hydrophobic cellulose-based cotton or non-woven fabrics containing mesoporous TiO2 particles were developed for potential use in healthcare and in other contaminated environments. Hydrosols made with the sol-gel method using two different amounts of the Ti precursor were applied to cotton and non-woven fabrics and their virucidal effect on Murine Coronavirus (MHV-3) and Human Adenovirus (HAdV-5) was evaluated under indoor light irradiation. The results show 90% reduction of HAdV-5 and up to 99% of MHV-3 in non-woven fabric, and 90% reduction of MHV-3 and no reduction of HAdV-5 in cotton fabric. The antiviral activity was related to the properties of the TiO2 powders and coatings characterized by BET surface area, DRX, DLS, FTIR, DRS, SEM, TEM and water contact angle. The hydrophobic characteristic of the treated fabrics and the high surface area of the TiO2 particles favor interaction with the virus, especially MHV-3. These results demonstrate that non-woven fabric and cotton, coated with TiO2, can be highly effective in preventing contamination with MHV-3 and HAdV-5 viruses, particularly for applications in healthcare indoor environments

    Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment

    Get PDF
    © 2018 The concentration of antiretroviral drugs in wastewater treatment plants (WWTP) effluents and surface waters of many countries has increased significantly due to their widespread use for HIV treatment. In this study, the removal of stavudine and zidovudine under UV 254 photolysis or UV 254 /H 2 O 2 was investigated in a microcapillary film (MCF) photoreactor, using minimal water samples quantities. The UV 254 quantum yield of zidovudine, (2.357 ± 0.0589)·10 −2 mol ein −1 (pH 4.0–8.0), was 28-fold higher that the yield of stavudine (8.34 ± 0.334)·10 −4 mol ein −1 (pH 6.0–8.0). The second-order rate constant k OH,i of reaction of hydroxyl radical with the antiretrovirals (UV 254 /H 2 O 2 process) were determined by kinetics modeling: (9.98 ± 0.68)·10 8 M −1 s −1 (pH 4.0–8.0) for zidovudine and (2.03 ± 0.18)·10 9 M −1 s −1 (pH 6.0–8.0) for stavudine. A battery of ecotoxicological tests (i.e. inhibition growth, bioluminescence, mutagenic and genotoxic activity) using bacteria (Aliivibrio fischeri, Salmonella typhimurium), crustacean (Daphnia magna) and algae (Raphidocelis subcapitata) revealed a marked influence of the UV dose on the ecotoxicological activity. The UV 254 /H 2 O 2 treatment process reduced the ecotoxicological risk associated to direct photolysis of the antiretrovirals aqueous solutions, but required significantly higher UV 254 doses (≄2000 mJ cm −2 ) in comparison to common water UV disinfection processes
    • 

    corecore