5 research outputs found

    Tests of Micro-Pattern Gaseous Detectors for Active Target Time Projection Chambers in nuclear physics

    Get PDF
    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics

    AGATA - Advanced GAmma Tracking Array

    Full text link

    AGATA-Advanced GAmma Tracking Array

    Get PDF
    AGATA CollaborationThe Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. (C) 2011 Elsevier B.V. All rights reserved.AGATA and this work is supported by the European funding bodies and the EU Contract RII3-CT-2004-506065, the German BMBF under Grants 06K-167 and 06KY205I, the Swedish Research Council and the Knut and Alice Wallenberg Foundation, UK EPSRC Engineering and Physical Sciences Research Council, UK STFC Science and Technology Facilities Council, AWE plc, Scientific and Technological Research Council of Turkey (Proj. nr. 106T055) and Ankara University (BAP Proj. nr. 05B4240002), the Polish Ministry of Science and Higher Education under Grant DPN/N190/AGATA/2009, the Spanish MICINN under grants FPA2008-06419 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (contract number CSD2007-00042) the Generalitat Valenciana under Grant PROMETEO/2010/101, and research performed in the frame of the GSI-IN2P3 collaboration agreement number 02-42. MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action.Peer Reviewe
    corecore