8,155 research outputs found

    Polar features in the flagellar propulsion of E. coli bacteria

    Full text link
    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether this two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterised by different propulsion forces, total torque and bundle conformations. We analyse the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells

    Quasi-saddles as relevant points of the potential energy surface in the dynamics of supercooled liquids

    Full text link
    The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying relevant points of the potential energy surface, i.e. the minima of the square gradient of total potential energy VV. The main findings are: ({\it i}) the number of negative curvatures nn of these sampled points appears to extrapolate to zero at the mode coupling critical temperature TcT_c; ({\it ii}) the temperature behavior of n(T)n(T) has a close relationship with the temperature behavior of the diffusivity; ({\it iii}) the potential energy landscape shows an high regularity in the distances among the relevant points and in their energy location. Finally we discuss a model of the landscape, previously introduced by Madan and Keyes [J. Chem. Phys. {\bf 98}, 3342 (1993)], able to reproduce the previous findings.Comment: To be published in J. Chem. Phy

    Strategies against nonsense: oxadiazoles as translational readthrough-inducing drugs (TRIDs)

    Get PDF
    This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison to aminoglycosides. Additionally, recent results on the efficiency of new candidate TRIDs in restoring the production of the cystic fibrosis transmembrane regulator (CFTR) protein will be presented. Finally, a prospectus on complementary strategies to enhance the effect of TRIDs will be illustrated together with a conclusive paragraph about perspectives, opportunities, and caveats in developing small molecules as TRIDs

    Hard sphere-like dynamics in a non hard sphere liquid

    Full text link
    The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, QQ, >>15 nm−1^{-1}). Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasi-elastic scattering, are beautifully described within the framework of the extended heat mode approximation of Enskog's kinetic theory, analytically derived for a hard spheres system. The present work demonstrates the applicability of Enskog's theory to non hard- sphere and non simple liquids.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let

    Thermal Fluctuations For a Three-Beads Swimmer

    Full text link
    We discuss a micro-swimmer model made of three spheres actuated by an internal active time-periodic force, tied by an elastic potential and submitted to hydrodynamic interactions with thermal noise. The dynamical approach we use, replacing the more common kinetic one, unveils the instability of the original model and the need of a confining potential to prevent the evaporation of the swimmer. We investigate the effect of the main parameters of the model, such as the frequency and phase difference of the periodic active force, the stiffness of the confining potential, the length of the swimmer and the temperature and viscosity of the fluid. Our observables of interest are the averages of the swim velocity, of the energy consumption rate, the diffusion coefficient and the swimming precision, which is limited by the energy consumption through the celebrated Thermodynamic Uncertainty Relations. An optimum for velocity and precision is found for an intermediate frequency. Reducing the potential stiffness, the viscosity or the length, is also beneficial for the swimming performance, but these parameters are limited by the consistency of the model. Analytical approximation for many of the interesting observables is obtained for small deformations of the swimmer. We also discuss the efficiency of the swimmer in terms of its maximum precision and of the hydrodynamic, or Lighthill, criterion, and how they are connected.Comment: 17 pages, 18 figures, submitte

    Vanishing conductivity of quantum solitons in polyacetylene

    Full text link
    Quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. We present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field.Comment: To appear in J. Phys. A: Math. Theor., 15 page
    • …
    corecore