21 research outputs found

    PREFACE

    Get PDF
    The annual 3D GeoInfo Conference aims at bringing together international state-of-the-art research and facilitating dialogue on emerging topics in the field of 3D geoinformation. On the 1st and 2nd of October 2018, the 13th 3D GeoInfo conference was organised at the Delft University of Technology. On this occasion, the topics included 3D data collection and modelling, reconstruction methods for 3D representation, data management for maintenance of 3D geoinformation or 3D data, applications of 3D geoinformation, and visualisation.This volume of the ISPRS Archives is composed of 9 full papers that received positive double-blind peer reviews, as well as the 24 papers that received positive double-blind reviews as abstracts and were then extended into papers. The 12 full papers with the most positive reviews were instead published in the ISPRS Annals. We hope that the papers in this special issue will inspire decision-makers, academics, engineers, computer scientists, land surveyors, urban planners, and students interested in the 3D geoinformation domain. We would like to thank all the authors, the reviewers, and the organising committee for their valuable contribution towards this publication. We would like to acknowledge that we have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 677312 UMnD: Urban modelling in higher dimensions).</p

    PREFACE

    Get PDF
    The annual 3D GeoInfo Conference aims at bringing together international state-of-the-art research and facilitating dialogue on emerging topics in the field of 3D geoinformation. On the 1st and 2nd of October 2018, the 13th 3D GeoInfo conference was organised at the Delft University of Technology. On this occasion, the topics included 3D data collection and modelling, reconstruction methods for 3D representation, data management for maintenance of 3D geoinformation or 3D data, applications of 3D geoinformation, and visualisation.This volume of the ISPRS Annals contains the 12 full papers that received the most positive double-blind peer reviews from the Scientific Committee of the 3D GeoInfo Conference. The other 33 presented papers are published in the ISPRS Archives.We hope that the papers in this special issue will inspire decision-makers, academics, engineers, computer scientists, land surveyors, urban planners, and students interested in the 3D geoinformation domain. We would like to thank all the authors, the reviewers, and the organising committee for their valuable contribution towards this publication.We would like to acknowledge that we have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 677312 UMnD: Urban modelling in higher dimensions).</p

    Flood damage cost estimation in 3D based on an indicator modelling framework

    No full text
    Flooding and other natural disasters pose risks to cities and residential homes, and these are set to increase in the face of climate change. Single-family residential buildings are of particular interest because they are difficult to insure and often highlight wealth discrepancies in society in the wake of natural disasters. Calculating building replacement cost based on a specific natural disaster is of interest to municipalities and city planners who are working to prepare their cities for potential future costs of recovery. There are models designed by flood modellers, and there are models designed by city planners. This paper presents a novel Indicator Modelling Framework (IMF) by bringing together a model from the flooding domain (HAZUS) and a model from the geospatial application domain (e.g. CityGML) and weaving them together. The weaving process automatically calculates the building replacement cost for buildings based on a flood scenario as well as generates domain-specific metadata. The weaving process capitalizes on the strengths of both models, and future work will focus on weaving between models in other domains.Urban Data Scienc

    Built Environmental Correlates of Cycling Accidents Involving Fatalities and Serious Injuries in London, UK

    No full text
    Introduction: Approximately 2,552 individuals were killed or seriously injured through cycling accidents in the Greater London Area between 2010 and 2015. The purpose of this study is to investigate a wide range of built environmental correlates of cycling accidents resulting in KSI so that we can identify potential areas for targeted interventions.Methods: We performed a cross-sectional analysis to examine the association between serious cycling injuries (2010-15), using road segment as the unit of analysis, and a wide range of built environmental characteristics. Multilevel models were used to account for potential spatial clustering.Results: Serious cycling injuries were independently associated with higher commercial and residential densities, higher distance to speed camera, higher bus, car, and 2-wheeled (motorcycle and moped) traffic, and higher density of alcohol outlets. Greenspace was associated with decreased odds of injuries up to the 3rd quartile, but roads adjacent to the highest levels of green space (4th quartile) had increased odds of injuries. Findings from our study point to the potential of urban planning interventions to reduce serious cycling injuries (e.g., speed cameras, improving safety near alcohol outlets and in parks, and recreational areas, etc.). Further research using quasi-experimental approaches is required to evaluate whether the implementation of interventions leads to injury reductions.Urban Data Scienc

    Preface

    No full text
    The annual 3D GeoInfo Conference aims at bringing together international state-of-the-art research and facilitating dialogue on emerging topics in the field of 3D geoinformation. On the 1st and 2nd of October 2018, the 13th 3D GeoInfo conference was organised at the Delft University of Technology. On this occasion, the topics included 3D data collection and modelling, reconstruction methods for 3D representation, data management for maintenance of 3D geoinformation or 3D data, applications of 3D geoinformation, and visualisation. This volume of the ISPRS Annals contains the 12 full papers that received the most positive double-blind peer reviews from the Scientific Committee of the 3D GeoInfo Conference. The other 33 presented papers are published in the ISPRS Archives. We hope that the papers in this special issue will inspire decision-makers, academics, engineers, computer scientists, land surveyors, urban planners, and students interested in the 3D geoinformation domain. We would like to thank all the authors, the reviewers, and the organising committee for their valuable contribution towards this publication. We would like to acknowledge that we have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 677312 UMnD: Urban modelling in higher dimensions)

    Generalising 3D Buildings from LoD2 to LoD1

    No full text
    The increasing popularity of 3D city models in navigation, urban planning, etc.,necessitates application-specific and geometrically accurate and valid models. The concept of Levels of Detail (LoDs) indicate a model’s scale of adherence to its real-world counterpart. Highly detailed datasets often contain errors or require an exorbitant level of computing power. Given the high availability of LoD2 datasets, our research focuses on three considerations for generalising to LoD1: the vertical reference, extrusion vs. downtrusion and floor plan simplification. We present in this paper an initial methodology that produces geometrically accurate LoD1 models with a reduction of over 70% of the original file size.Urban Data Scienc

    An Improved LOD Framework for the Terrains in 3D City Models

    No full text
    The Level of Detail (LOD) concept in CityGML 2.0 is meant to differentiate the multiple representations of semantic 3D city models. Despite the popularity and general acceptance of the concept by the practitioners and stakeholders in 3D city modelling, there are still some limitations. While the CityGML LOD concept is well defined for buildings, bridges, tunnels, and to some extent for roads, there is no clear definition of LODs for terrain/relief, vegetation, land use, water bodies, and generic city objects in CityGML. In addition, extensive research has been done to refine the LOD concept of CityGML for buildings but little is known on requirements and possibilities to model city object types as terrain at different LODs. To address this gap, we focus in this paper on the terrain of a 3D city model and propose a framework for modelling terrains at different LODs in CityGML. As a proof of concept of our framework, we implemented a software prototype to generate terrain models with other city features integrated (e.g. buildings) at different LODs in CityGML.Urban Data Scienc

    A metadata ADE for CityGML

    No full text
    While there exist international standards for geospatial metadata (ISO 19115), these are rarely used in practice for 3D datasets, and one of the OGC standards for 3D city models, CityGML, does not offer a mechanism to store metadata in a structured way. Having metadata in CityGML files, which are in practice often very large and complex, would provide us with the ability to quickly understand the nature of a dataset and to determine if it is relevant for a specific task. Alack of metadata introduces uncertainty into models that are already full of assumptions and estimations. In this paper, we first examine the metadata needs that are specific for 3D geographical datasets and propose ISO 19115compliant categories. We then describe how these can be used within CityGML by defining an Application DomainExtension (ADE), which allows us to store metadata for existing city objects of CityGML, as well as objects in other domain-specific ADEs. Our ADE, its schema in both UML and XSD, and sample datasets is openly accessible, and it can be easily extended to support application specific metadata. In addition the metadata elements have been added to the core of CityJSON. We also offer software to generate automatically many of the metadata categories and we propose coupling it with the source 3D dataset.Urban Data Scienc

    A Survey on the Adoption of GIS Data and Standards in Urban Application Domains

    No full text
    GIS has become an important part of many disciplines and supports a vast range of applications. It is used everywhere, from agriculture to public health care. Furthermore, with the advances in technologies, the availability of GIS data and software support has grown exponentially. In this paper, we present the results of our international survey to investigate the adoption of geospatial data, standards, and software by the practitioners in different application domains. The results demonstrate a clear trend towards the increased use of GIS in a number of application domains including architecture, geosciences, hydrology, and so on. We also explore the expectations of the users from the GIS technologies and provide some insight into the current status of 3D GIS data and its applications.Urban Data Scienc

    From road centrelines to carriageways: A reconstruction algorithm

    No full text
    Roads are important for many urban planning applications, such as traffic modelling and delivery vehicle routing. At present, most available datasets represent roads only as centrelines. This is particularily true for OpenStreetMap which provides, among many features, road networks at worldwide coverage. Furthermore, most approaches for creating more detailed networks, such as carriageways or lanes, focus on doing so from sources that are not easy to acquire, such as satellite imagery or LiDAR scans. In this paper we present a methodology to create carriageways based on OpenStreetMap's centrelines and open access areal representations (i.e. polygons) to determine which roads should be represented as two individual carriageways. We applied our methodology in five areas across four different countries with different built environments. We analysed the outcome in a delivery routing problem to evaluate the validity of our results. Our results suggest that this method can be effectively applied to create carriageways anywhere in the world, as long as there is sufficient coverage by OpenStreetMap and an areal representation dataset of roads. Urban Data Scienc
    corecore