595 research outputs found

    UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas

    Get PDF
    For the first time the emission of the radiative dissociation continuum of the hydrogen molecule (a3Σg+b3Σu+a^{3}\Sigma_{g}^{+} \to b^{3}\Sigma_{u}^{+} electronic transition) is proposed to be used as a source of information for the spectroscopic diagnostics of non-equilibrium plasmas. The detailed analysis of excitation-deactivation kinetics, rate constants of various collisional and radiative transitions and fitting procedures made it possible to develop two new methods of diagnostics of: (1) the ground X1Σg+X^{1}\Sigma_{g}^{+} state vibrational temperature TvibT_{\text{vib}} from the relative intensity distribution, and (2) the rate of electron impact dissociation (d[\mbox{H_{2}}]/dt)_{\text{diss}} from the absolute intensity of the continuum. A known method of determination of TvibT_{\text{vib}} from relative intensities of Fulcher-α\alpha bands was seriously corrected and simplified due to the revision of dad \to a transition probabilities and cross sections of dXd \gets X electron impact excitation. General considerations are illustrated with examples of experiments in pure hydrogen capillary-arc and H2_{2}+Ar microwave discharges.Comment: REVTeX, 25 pages + 12 figures + 9 tables. Phys. Rev. E, eprint replaced because of resubmission to journal after referee's 2nd repor

    Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)

    Full text link
    Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single crystals have been studied upon continuous doping of CoO_2 planes with either electrons or holes. The thermoelectric response and the resistivity behavior reveal a hopping character of the transport in both compounds, providing the basis for understanding the recently found remarkable divergence of the Seebeck coefficient at x=0.5. The doping dependence of the thermoelectric power evinces that the configurational entropy of charge carriers, enhanced by their spin and orbital degeneracy, plays a key role in the origin of the large thermoelectric response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR

    Magnetoresistance Anomalies in Antiferromagnetic YBa_2Cu_3O_{6+x}: Fingerprints of Charged Stripes

    Full text link
    We report novel features in the in-plane magnetoresistance (MR) of heavily underdoped YBa_2Cu_3O_{6+x}, which unveil a developed ``charged stripe'' structure in this system. One of the striking features is an anisotropy of the MR with a "d-wave" symmetry upon rotating the magnetic field H within the ab plane, which is caused by the rotation of the stripes with the external field. With decreasing temperature, a hysteresis shows up below ~20 K in the MR curve as a function of H and finally below 10 K the magnetic-field application produces a persistent change in the resistivity. This "memory effect" is caused by the freezing of the directionally-ordered stripes.Comment: 4 pages, 6 figures, final version, to appear in 4 October 1999 issue of PR

    Magnetic order in lightly doped La_{2-x}Sr_{x}CuO_{4}

    Full text link
    We study long wavelength magnetic excitations in lightly doped La_{2-x}Sr_{x}CuO_{4} (x < 0.03) detwinned crystals. The lowest energy magnetic anisotropy induced gap can be understood in terms of the antisymmetric spin interaction inside the antiferromagnetic (AF) phase. The second magnetic resonace, analyzed in terms of in-plane spin anisotropy, shows unconventional behavior within the AF state and led to the discovery of collective spin excitations pertaining to a field induced magnetically ordered state. This state persists in a 9 T field to more than 100 K above the N\'{e}el temperature in x = 0.01.Comment: 5 pages, 5 figure

    Magnetoresistance in Heavily Underdoped YBa_2Cu_3O_{6+x}: Antiferromagnetic Correlations and Normal-State Transport

    Full text link
    We report on a contrasting behavior of the in-plane and out-of-plane magnetoresistance (MR) in heavily underdoped antiferromagnetic (AF) YBa_2Cu_3O_{6+x} (x<0.37). The out-of-plane MR (I//c) is positive over most of the temperature range and shows a sharp increase, by about two orders of magnitude, upon cooling through the Neel temperature T_N. A contribution associated with the AF correlations is found to dominate the out-of-plane MR behavior for H//c from far above T_N, pointing to the key role of spin fluctuations in the out-of-plane transport. In contrast, the transverse in-plane MR (I//a(b);H//c) appears to be small and smooth through T_N, implying that the development of the AF order has little effect on the in-plane resistivity.Comment: 4 pages, 5 figures, accepted for publication in Phys.Rev.Let

    More on the Subtraction Algorithm

    Full text link
    We go on in the program of investigating the removal of divergences of a generical quantum gauge field theory, in the context of the Batalin-Vilkovisky formalism. We extend to open gauge-algebrae a recently formulated algorithm, based on redefinitions δλ\delta\lambda of the parameters λ\lambda of the classical Lagrangian and canonical transformations, by generalizing a well- known conjecture on the form of the divergent terms. We also show that it is possible to reach a complete control on the effects of the subtraction algorithm on the space Mgf{\cal M}_{gf} of the gauge-fixing parameters. A principal fiber bundle EMgf{\cal E}\rightarrow {\cal M}_{gf} with a connection ω1\omega_1 is defined, such that the canonical transformations are gauge transformations for ω1\omega_1. This provides an intuitive geometrical description of the fact the on shell physical amplitudes cannot depend on Mgf{\cal M}_{gf}. A geometrical description of the effect of the subtraction algorithm on the space Mph{\cal M}_{ph} of the physical parameters λ\lambda is also proposed. At the end, the full subtraction algorithm can be described as a series of diffeomorphisms on Mph{\cal M}_{ph}, orthogonal to Mgf{\cal M}_{gf} (under which the action transforms as a scalar), and gauge transformations on E{\cal E}. In this geometrical context, a suitable concept of predictivity is formulated. We give some examples of (unphysical) toy models that satisfy this requirement, though being neither power counting renormalizable, nor finite.Comment: LaTeX file, 37 pages, preprint SISSA/ISAS 90/94/E

    Resistive Transition and Upper Critical Field in Underdoped YBa_2Cu_3O_{6+x} Single Crystals

    Full text link
    A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa_2Cu_3O_{6+x} crystals in the range T_c<30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T_c<13 K it decreased with increasing magnetic field. The transition point T_c(B) was determined by analyzing the fluctuation conductivity. The curves of B_{c2}(T) measured in the region T/T_c>0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T_c. The only difference among the curves of B_{c2}(T) for different crystal states is the scales of T and B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov's model of boson superconductivity.Comment: 10 Revtex pages, 6 figures, uses psfig.st
    corecore